diff --git a/Game/Levels/AdvAddition/L01ne_succ_self.lean b/Game/Levels/AdvAddition/L01ne_succ_self.lean index 3ffdc22..c487432 100644 --- a/Game/Levels/AdvAddition/L01ne_succ_self.lean +++ b/Game/Levels/AdvAddition/L01ne_succ_self.lean @@ -15,6 +15,9 @@ which is a warm-up to see if you remember `zero_ne_succ` and `succ_inj`, and how to use the `apply` tactic. " +LemmaDoc MyNat.ne_succ_self as "ne_succ_self" in "≤" " +`ne_succ_self n` is the proof that `n ≠ succ n`." + /-- $n\neq\operatorname{succ}(n)$. -/ Statement ne_succ_self (n : ℕ) : n ≠ succ n := by Hint "Start with `induction`." diff --git a/Game/Levels/LessOrEqual/L03le_succ_self.lean b/Game/Levels/LessOrEqual/L03le_succ_self.lean index a847473..c447094 100644 --- a/Game/Levels/LessOrEqual/L03le_succ_self.lean +++ b/Game/Levels/LessOrEqual/L03le_succ_self.lean @@ -13,7 +13,7 @@ LemmaDoc MyNat.le_succ_self as "le_succ_self" in "≤" " NewLemma MyNat.le_succ_self /-- If $x$ is a number, then $x \le \operatorname{succ}(x)$. -/ -Statement (x : ℕ) : x ≤ succ x := by +Statement le_succ_self (x : ℕ) : x ≤ succ x := by use 1 rw [succ_eq_add_one] rfl