get game building again!
This commit is contained in:
@@ -15,6 +15,9 @@ which is a warm-up to see if you remember `zero_ne_succ`
|
|||||||
and `succ_inj`, and how to use the `apply` tactic.
|
and `succ_inj`, and how to use the `apply` tactic.
|
||||||
"
|
"
|
||||||
|
|
||||||
|
LemmaDoc MyNat.ne_succ_self as "ne_succ_self" in "≤" "
|
||||||
|
`ne_succ_self n` is the proof that `n ≠ succ n`."
|
||||||
|
|
||||||
/-- $n\neq\operatorname{succ}(n)$. -/
|
/-- $n\neq\operatorname{succ}(n)$. -/
|
||||||
Statement ne_succ_self (n : ℕ) : n ≠ succ n := by
|
Statement ne_succ_self (n : ℕ) : n ≠ succ n := by
|
||||||
Hint "Start with `induction`."
|
Hint "Start with `induction`."
|
||||||
|
|||||||
@@ -13,7 +13,7 @@ LemmaDoc MyNat.le_succ_self as "le_succ_self" in "≤" "
|
|||||||
NewLemma MyNat.le_succ_self
|
NewLemma MyNat.le_succ_self
|
||||||
|
|
||||||
/-- If $x$ is a number, then $x \le \operatorname{succ}(x)$. -/
|
/-- If $x$ is a number, then $x \le \operatorname{succ}(x)$. -/
|
||||||
Statement (x : ℕ) : x ≤ succ x := by
|
Statement le_succ_self (x : ℕ) : x ≤ succ x := by
|
||||||
use 1
|
use 1
|
||||||
rw [succ_eq_add_one]
|
rw [succ_eq_add_one]
|
||||||
rfl
|
rfl
|
||||||
|
|||||||
Reference in New Issue
Block a user