Files
cpython/Lib/test/test_math_integer.py
2025-10-31 16:13:43 +02:00

404 lines
15 KiB
Python

from decimal import Decimal
from fractions import Fraction
import unittest
from test import support
class IntSubclass(int):
pass
# Class providing an __index__ method.
class MyIndexable(object):
def __init__(self, value):
self.value = value
def __index__(self):
return self.value
# Here's a pure Python version of the math.integer.factorial algorithm, for
# documentation and comparison purposes.
#
# Formula:
#
# factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
#
# where
#
# factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
#
# The outer product above is an infinite product, but once i >= n.bit_length,
# (n >> i) < 1 and the corresponding term of the product is empty. So only the
# finitely many terms for 0 <= i < n.bit_length() contribute anything.
#
# We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner
# product in the formula above starts at 1 for i == n.bit_length(); for each i
# < n.bit_length() we get the inner product for i from that for i + 1 by
# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms,
# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).
def count_set_bits(n):
"""Number of '1' bits in binary expansion of a nonnnegative integer."""
return 1 + count_set_bits(n & n - 1) if n else 0
def partial_product(start, stop):
"""Product of integers in range(start, stop, 2), computed recursively.
start and stop should both be odd, with start <= stop.
"""
numfactors = (stop - start) >> 1
if not numfactors:
return 1
elif numfactors == 1:
return start
else:
mid = (start + numfactors) | 1
return partial_product(start, mid) * partial_product(mid, stop)
def py_factorial(n):
"""Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
described at http://www.luschny.de/math/factorial/binarysplitfact.html
"""
inner = outer = 1
for i in reversed(range(n.bit_length())):
inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
outer *= inner
return outer << (n - count_set_bits(n))
class IntMathTests(unittest.TestCase):
import math.integer as module
def assertIntEqual(self, actual, expected):
self.assertEqual(actual, expected)
self.assertIs(type(actual), int)
def test_factorial(self):
factorial = self.module.factorial
self.assertEqual(factorial(0), 1)
total = 1
for i in range(1, 1000):
total *= i
self.assertEqual(factorial(i), total)
self.assertEqual(factorial(i), py_factorial(i))
self.assertIntEqual(factorial(False), 1)
self.assertIntEqual(factorial(True), 1)
for i in range(3):
expected = factorial(i)
self.assertIntEqual(factorial(IntSubclass(i)), expected)
self.assertIntEqual(factorial(MyIndexable(i)), expected)
self.assertRaises(ValueError, factorial, -1)
self.assertRaises(ValueError, factorial, -10**1000)
def test_factorial_non_integers(self):
factorial = self.module.factorial
self.assertRaises(TypeError, factorial, 5.0)
self.assertRaises(TypeError, factorial, 5.2)
self.assertRaises(TypeError, factorial, -1.0)
self.assertRaises(TypeError, factorial, -1e100)
self.assertRaises(TypeError, factorial, Decimal('5'))
self.assertRaises(TypeError, factorial, Decimal('5.2'))
self.assertRaises(TypeError, factorial, Fraction(5, 1))
self.assertRaises(TypeError, factorial, "5")
# Other implementations may place different upper bounds.
@support.cpython_only
def test_factorial_huge_inputs(self):
factorial = self.module.factorial
# Currently raises OverflowError for inputs that are too large
# to fit into a C long.
self.assertRaises(OverflowError, factorial, 10**100)
self.assertRaises(TypeError, factorial, 1e100)
def test_gcd(self):
gcd = self.module.gcd
self.assertEqual(gcd(0, 0), 0)
self.assertEqual(gcd(1, 0), 1)
self.assertEqual(gcd(-1, 0), 1)
self.assertEqual(gcd(0, 1), 1)
self.assertEqual(gcd(0, -1), 1)
self.assertEqual(gcd(7, 1), 1)
self.assertEqual(gcd(7, -1), 1)
self.assertEqual(gcd(-23, 15), 1)
self.assertEqual(gcd(120, 84), 12)
self.assertEqual(gcd(84, -120), 12)
self.assertEqual(gcd(1216342683557601535506311712,
436522681849110124616458784), 32)
c = 652560
x = 434610456570399902378880679233098819019853229470286994367836600566
y = 1064502245825115327754847244914921553977
a = x * c
b = y * c
self.assertEqual(gcd(a, b), c)
self.assertEqual(gcd(b, a), c)
self.assertEqual(gcd(-a, b), c)
self.assertEqual(gcd(b, -a), c)
self.assertEqual(gcd(a, -b), c)
self.assertEqual(gcd(-b, a), c)
self.assertEqual(gcd(-a, -b), c)
self.assertEqual(gcd(-b, -a), c)
c = 576559230871654959816130551884856912003141446781646602790216406874
a = x * c
b = y * c
self.assertEqual(gcd(a, b), c)
self.assertEqual(gcd(b, a), c)
self.assertEqual(gcd(-a, b), c)
self.assertEqual(gcd(b, -a), c)
self.assertEqual(gcd(a, -b), c)
self.assertEqual(gcd(-b, a), c)
self.assertEqual(gcd(-a, -b), c)
self.assertEqual(gcd(-b, -a), c)
self.assertRaises(TypeError, gcd, 120.0, 84)
self.assertRaises(TypeError, gcd, 120, 84.0)
self.assertIntEqual(gcd(IntSubclass(120), IntSubclass(84)), 12)
self.assertIntEqual(gcd(MyIndexable(120), MyIndexable(84)), 12)
def test_lcm(self):
lcm = self.module.lcm
self.assertEqual(lcm(0, 0), 0)
self.assertEqual(lcm(1, 0), 0)
self.assertEqual(lcm(-1, 0), 0)
self.assertEqual(lcm(0, 1), 0)
self.assertEqual(lcm(0, -1), 0)
self.assertEqual(lcm(7, 1), 7)
self.assertEqual(lcm(7, -1), 7)
self.assertEqual(lcm(-23, 15), 345)
self.assertEqual(lcm(120, 84), 840)
self.assertEqual(lcm(84, -120), 840)
self.assertEqual(lcm(1216342683557601535506311712,
436522681849110124616458784),
16592536571065866494401400422922201534178938447014944)
x = 43461045657039990237
y = 10645022458251153277
for c in (652560,
57655923087165495981):
a = x * c
b = y * c
d = x * y * c
self.assertEqual(lcm(a, b), d)
self.assertEqual(lcm(b, a), d)
self.assertEqual(lcm(-a, b), d)
self.assertEqual(lcm(b, -a), d)
self.assertEqual(lcm(a, -b), d)
self.assertEqual(lcm(-b, a), d)
self.assertEqual(lcm(-a, -b), d)
self.assertEqual(lcm(-b, -a), d)
self.assertEqual(lcm(), 1)
self.assertEqual(lcm(120), 120)
self.assertEqual(lcm(-120), 120)
self.assertEqual(lcm(120, 84, 102), 14280)
self.assertEqual(lcm(120, 0, 84), 0)
self.assertRaises(TypeError, lcm, 120.0)
self.assertRaises(TypeError, lcm, 120.0, 84)
self.assertRaises(TypeError, lcm, 120, 84.0)
self.assertRaises(TypeError, lcm, 120, 0, 84.0)
self.assertEqual(lcm(MyIndexable(120), MyIndexable(84)), 840)
def test_isqrt(self):
isqrt = self.module.isqrt
# Test a variety of inputs, large and small.
test_values = (
list(range(1000))
+ list(range(10**6 - 1000, 10**6 + 1000))
+ [2**e + i for e in range(60, 200) for i in range(-40, 40)]
+ [3**9999, 10**5001]
)
for value in test_values:
with self.subTest(value=value):
s = isqrt(value)
self.assertIs(type(s), int)
self.assertLessEqual(s*s, value)
self.assertLess(value, (s+1)*(s+1))
# Negative values
with self.assertRaises(ValueError):
isqrt(-1)
# Integer-like things
self.assertIntEqual(isqrt(True), 1)
self.assertIntEqual(isqrt(False), 0)
self.assertIntEqual(isqrt(MyIndexable(1729)), 41)
with self.assertRaises(ValueError):
isqrt(MyIndexable(-3))
# Non-integer-like things
bad_values = [
3.5, "a string", Decimal("3.5"), 3.5j,
100.0, -4.0,
]
for value in bad_values:
with self.subTest(value=value):
with self.assertRaises(TypeError):
isqrt(value)
@support.bigmemtest(2**32, memuse=0.85)
def test_isqrt_huge(self, size):
isqrt = self.module.isqrt
if size & 1:
size += 1
v = 1 << size
w = isqrt(v)
self.assertEqual(w.bit_length(), size // 2 + 1)
self.assertEqual(w.bit_count(), 1)
def test_perm(self):
perm = self.module.perm
factorial = self.module.factorial
# Test if factorial definition is satisfied
for n in range(500):
for k in (range(n + 1) if n < 100 else range(30) if n < 200 else range(10)):
self.assertEqual(perm(n, k),
factorial(n) // factorial(n - k))
# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))
# Test corner cases
for n in range(1, 100):
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, n), factorial(n))
# Test one argument form
for n in range(20):
self.assertEqual(perm(n), factorial(n))
self.assertEqual(perm(n, None), factorial(n))
# Raises TypeError if any argument is non-integer or argument count is
# not 1 or 2
self.assertRaises(TypeError, perm, 10, 1.0)
self.assertRaises(TypeError, perm, 10, Decimal(1.0))
self.assertRaises(TypeError, perm, 10, Fraction(1, 1))
self.assertRaises(TypeError, perm, 10, "1")
self.assertRaises(TypeError, perm, 10.0, 1)
self.assertRaises(TypeError, perm, Decimal(10.0), 1)
self.assertRaises(TypeError, perm, Fraction(10, 1), 1)
self.assertRaises(TypeError, perm, "10", 1)
self.assertRaises(TypeError, perm)
self.assertRaises(TypeError, perm, 10, 1, 3)
self.assertRaises(TypeError, perm)
# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, perm, -1, 1)
self.assertRaises(ValueError, perm, -2**1000, 1)
self.assertRaises(ValueError, perm, 1, -1)
self.assertRaises(ValueError, perm, 1, -2**1000)
# Returns zero if k is greater than n
self.assertEqual(perm(1, 2), 0)
self.assertEqual(perm(1, 2**1000), 0)
n = 2**1000
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, 2), n * (n-1))
if support.check_impl_detail(cpython=True):
self.assertRaises(OverflowError, perm, n, n)
for n, k in (True, True), (True, False), (False, False):
self.assertIntEqual(perm(n, k), 1)
self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
for k in range(3):
self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)
def test_comb(self):
comb = self.module.comb
factorial = self.module.factorial
# Test if factorial definition is satisfied
for n in range(500):
for k in (range(n + 1) if n < 100 else range(30) if n < 200 else range(10)):
self.assertEqual(comb(n, k), factorial(n)
// (factorial(k) * factorial(n - k)))
# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(comb(n, k), comb(n - 1, k - 1) + comb(n - 1, k))
# Test corner cases
for n in range(100):
self.assertEqual(comb(n, 0), 1)
self.assertEqual(comb(n, n), 1)
for n in range(1, 100):
self.assertEqual(comb(n, 1), n)
self.assertEqual(comb(n, n - 1), n)
# Test Symmetry
for n in range(100):
for k in range(n // 2):
self.assertEqual(comb(n, k), comb(n, n - k))
# Raises TypeError if any argument is non-integer or argument count is
# not 2
self.assertRaises(TypeError, comb, 10, 1.0)
self.assertRaises(TypeError, comb, 10, Decimal(1.0))
self.assertRaises(TypeError, comb, 10, "1")
self.assertRaises(TypeError, comb, 10.0, 1)
self.assertRaises(TypeError, comb, Decimal(10.0), 1)
self.assertRaises(TypeError, comb, "10", 1)
self.assertRaises(TypeError, comb, 10)
self.assertRaises(TypeError, comb, 10, 1, 3)
self.assertRaises(TypeError, comb)
# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, comb, -1, 1)
self.assertRaises(ValueError, comb, -2**1000, 1)
self.assertRaises(ValueError, comb, 1, -1)
self.assertRaises(ValueError, comb, 1, -2**1000)
# Returns zero if k is greater than n
self.assertEqual(comb(1, 2), 0)
self.assertEqual(comb(1, 2**1000), 0)
n = 2**1000
self.assertEqual(comb(n, 0), 1)
self.assertEqual(comb(n, 1), n)
self.assertEqual(comb(n, 2), n * (n-1) // 2)
self.assertEqual(comb(n, n), 1)
self.assertEqual(comb(n, n-1), n)
self.assertEqual(comb(n, n-2), n * (n-1) // 2)
if support.check_impl_detail(cpython=True):
self.assertRaises(OverflowError, comb, n, n//2)
for n, k in (True, True), (True, False), (False, False):
self.assertIntEqual(comb(n, k), 1)
self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
for k in range(3):
self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)
class MathTests(IntMathTests):
import math as module
class MiscTests(unittest.TestCase):
def test_module_name(self):
import math.integer
self.assertEqual(math.integer.__name__, 'math.integer')
for name in dir(math.integer):
if not name.startswith('_'):
obj = getattr(math.integer, name)
self.assertEqual(obj.__module__, 'math.integer')
if __name__ == '__main__':
unittest.main()