/* * Interface to TYT MD-UV380. * * Copyright (C) 2018 Serge Vakulenko, KK6ABQ * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "radio.h" #include "util.h" #define NCHAN 1000 #define NZONES 10 #define NPMS 50 #define MEMSZ 0x6fc8 #define OFFSET_VFO 0x0048 #define OFFSET_HOME 0x01c8 #define OFFSET_CHANNELS 0x0248 #define OFFSET_PMS 0x40c8 #define OFFSET_NAMES 0x4708 #define OFFSET_ZONES 0x69c8 #define OFFSET_SCAN 0x6ec8 static const char CHARSET[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ !`o$%&'()*+,-./|;/=>?@[~]^__"; #define NCHARS 65 #define SPACE 36 #define OPENBOX 64 static const char *POWER_NAME[] = { "High", "Med", "Low", "??" }; static const char *SCAN_NAME[] = { "+", "-", "Only", "??" }; enum { STEP_5 = 0, STEP_10, STEP_12_5, STEP_15, STEP_20, STEP_25, STEP_50, STEP_100, }; // // Data structure for a memory channel. // typedef struct { uint8_t duplex : 4, // Repeater mode #define D_SIMPLEX 0 #define D_NEG_OFFSET 2 #define D_POS_OFFSET 3 #define D_CROSS_BAND 4 isam : 1, // Amplitude modulation isnarrow : 1, // Narrow FM modulation _u1 : 1, used : 1; // Channel is used uint8_t rxfreq [3]; // Receive frequency uint8_t tmode : 3, // CTCSS/DCS mode #define T_OFF 0 #define T_TONE 1 #define T_TSQL 2 #define T_TSQL_REV 3 #define T_DTCS 4 #define T_D 5 #define T_T_DCS 6 #define T_D_TSQL 7 step : 3, // Frequency step _u2 : 2; uint8_t txfreq [3]; // Transmit frequency when cross-band uint8_t tone : 6, // CTCSS tone select #define TONE_DEFAULT 12 power : 2; // Transmit power level uint8_t dtcs : 7, // DCS code select _u3 : 1; uint8_t _u4 [2]; uint8_t offset; // TX offset, in 50kHz steps uint8_t _u5 [3]; } memory_channel_t; // // Data structure for a channel name. // typedef struct { uint8_t name[6]; uint8_t _u1 : 7, used : 1; uint8_t _u2 : 7, valid : 1; } memory_name_t; // // Print a generic information about the device. // static void uv380_print_version(FILE *out) { // Nothing to print. } // // Read block of data, up to 64 bytes. // When start==0, return non-zero on success or 0 when empty. // When start!=0, halt the program on any error. // static int read_block(int fd, int start, unsigned char *data, int nbytes) { unsigned char reply; int len; // Read data. len = serial_read(fd, data, nbytes); if (len != nbytes) { if (start == 0) return 0; fprintf(stderr, "Reading block 0x%04x: got only %d bytes.\n", start, len); exit(-1); } // Get acknowledge. serial_write(fd, "\x06", 1); if (serial_read(fd, &reply, 1) != 1) { fprintf(stderr, "No acknowledge after block 0x%04x.\n", start); exit(-1); } if (reply != 0x06) { fprintf(stderr, "Bad acknowledge after block 0x%04x: %02x\n", start, reply); exit(-1); } if (serial_verbose) { printf("# Read 0x%04x: ", start); print_hex(data, nbytes); printf("\n"); } else { ++radio_progress; if (radio_progress % 16 == 0) { fprintf(stderr, "#"); fflush(stderr); } } return 1; } // // Write block of data, up to 64 bytes. // Halt the program on any error. // Return 0 on error. // static int write_block(int fd, int start, const unsigned char *data, int nbytes) { unsigned char reply[64]; int len; serial_write(fd, data, nbytes); // Get echo. len = serial_read(fd, reply, nbytes); if (len != nbytes) { fprintf(stderr, "! Echo for block 0x%04x: got only %d bytes.\n", start, len); return 0; } // Get acknowledge. if (serial_read(fd, reply, 1) != 1) { fprintf(stderr, "! No acknowledge after block 0x%04x.\n", start); return 0; } if (reply[0] != 0x06) { fprintf(stderr, "! Bad acknowledge after block 0x%04x: %02x\n", start, reply[0]); return 0; } if (serial_verbose) { printf("# Write 0x%04x: ", start); print_hex(data, nbytes); printf("\n"); } else { ++radio_progress; if (radio_progress % 16 == 0) { fprintf(stderr, "#"); fflush(stderr); } } return 1; } // // Read memory image from the device. // static void uv380_download() { int addr; // Wait for the first 8 bytes. while (read_block(radio_port, 0, &radio_mem[0], 8) == 0) continue; // Get the rest of data. for (addr=8; addr> 4) & 15) * 10000000 + (bcd[1] & 15) * 1000000 + ((bcd[2] >> 4) & 15) * 100000 + (bcd[2] & 15) * 10000; hz += (bcd[0] >> 6) * 2500; return hz; } // // Convert an integet frequency value (in Hertz) // to a 3-byte binary coded decimal format. // static void hz_to_freq(int hz, uint8_t *bcd) { bcd[0] = (hz / 2500 % 4) << 6 | (hz / 100000000 % 10); bcd[1] = (hz / 10000000 % 10) << 4 | (hz / 1000000 % 10); bcd[2] = (hz / 100000 % 10) << 4 | (hz / 10000 % 10); } // // Is this zone non-empty? // static int have_zone(int b) { unsigned char *data = &radio_mem[OFFSET_ZONES + b * 0x80]; int c; for (c=0; c= 0) fprintf(out, ","); fprintf(out, "%d", cnum); } last = cnum; } if (range) fprintf(out, "-%d", last); fprintf(out, "\n"); } // // Set the bitmask of zones for a given channel. // Return 0 on failure. // static void setup_zone(int zone_index, int chan_index) { uint8_t *data = &radio_mem[OFFSET_ZONES + zone_index*0x80 + chan_index/8]; *data |= 1 << (chan_index & 7); } // // Extract channel name. // static void decode_name(int i, char *name) { memory_name_t *nm = i + (memory_name_t*) &radio_mem[OFFSET_NAMES]; if (nm->valid && nm->used) { int n, c; for (n=0; n<6; n++) { c = nm->name[n]; name[n] = (c < NCHARS) ? CHARSET[c] : ' '; // Replace spaces by underscore. if (name[n] == ' ') name[n] = '_'; } // Strip trailing spaces. for (n=5; n>=0 && name[n]=='_'; n--) name[n] = 0; name[6] = 0; } } // // Encode a character from ASCII to internal index. // Replace underscores by spaces. // Make all letters uppercase. // static int encode_char(int c) { int i; // Replace underscore by space. if (c == '_') c = ' '; if (c >= 'a' && c <= 'z') c += 'A' - 'a'; for (i=0; ivalid = 1; nm->used = 1; for (n=0; n<6 && name[n]; n++) { nm->name[n] = encode_char(name[n]); } for (; n<6; n++) nm->name[n] = SPACE; } else { // Clear name. nm->valid = 0; nm->used = 0; for (n=0; n<6; n++) nm->name[n] = 0xff; } } // // Get all parameters for a given channel. // Seek selects the type of channel: // OFFSET_VFO - VFO channel, 0..4 // OFFSET_HOME - home channel, 0..4 // OFFSET_CHANNELS - memory channel, 0..999 // OFFSET_PMS - programmable memory scan, i=0..99 // static void decode_channel(int i, int seek, char *name, int *rx_hz, int *tx_hz, int *power, int *wide, int *scan, int *isam, int *step) { memory_channel_t *ch = i + (memory_channel_t*) &radio_mem[seek]; int scan_data = radio_mem[OFFSET_SCAN + i/4]; *rx_hz = *tx_hz = 0; *power = *wide = *scan = *isam = *step = 0; if (name) *name = 0; if (! ch->used && (seek == OFFSET_CHANNELS || seek == OFFSET_PMS)) return; // Extract channel name. if (name && seek == OFFSET_CHANNELS) decode_name(i, name); // Decode channel frequencies. *rx_hz = freq_to_hz(ch->rxfreq); *tx_hz = *rx_hz; switch (ch->duplex) { case D_NEG_OFFSET: *tx_hz -= ch->offset * 50000; break; case D_POS_OFFSET: *tx_hz += ch->offset * 50000; break; case D_CROSS_BAND: *tx_hz = freq_to_hz(ch->txfreq); break; } // Other parameters. *power = ch->power; *wide = ! ch->isnarrow; *scan = (scan_data << ((i & 3) * 2) >> 6) & 3; *isam = ch->isam; *step = ch->step; } // // Set the parameters for a given memory channel. // static void setup_channel(int i, char *name, double rx_mhz, double tx_mhz, int tmode, int power, int wide, int scan, int isam) { memory_channel_t *ch = i + (memory_channel_t*) &radio_mem[OFFSET_CHANNELS]; hz_to_freq((int) (rx_mhz * 1000000.0), ch->rxfreq); double offset_mhz = tx_mhz - rx_mhz; ch->offset = 0; ch->txfreq[0] = ch->txfreq[1] = ch->txfreq[2] = 0; if (offset_mhz == 0) { ch->duplex = D_SIMPLEX; } else if (offset_mhz > 0 && offset_mhz < 256 * 0.05) { ch->duplex = D_POS_OFFSET; ch->offset = (int) (offset_mhz / 0.05 + 0.5); } else if (offset_mhz < 0 && offset_mhz > -256 * 0.05) { ch->duplex = D_NEG_OFFSET; ch->offset = (int) (-offset_mhz / 0.05 + 0.5); } else { ch->duplex = D_CROSS_BAND; hz_to_freq((int) (tx_mhz * 1000000.0), ch->txfreq); } ch->used = (rx_mhz > 0); ch->tmode = tmode; ch->power = power; ch->isnarrow = ! wide; ch->isam = isam; ch->step = (rx_mhz >= 400) ? STEP_12_5 : STEP_5; ch->_u1 = 0; ch->_u2 = (rx_mhz >= 400); ch->_u3 = 0; ch->_u4[0] = 15; ch->_u4[1] = 0; ch->_u5[0] = ch->_u5[1] = ch->_u5[2] = 0; // Scan mode. unsigned char *scan_data = &radio_mem[OFFSET_SCAN + i/4]; int scan_shift = (i & 3) * 2; *scan_data &= ~(3 << scan_shift); *scan_data |= scan << scan_shift; encode_name(i, name); } // // Print the transmit offset or frequency. // static void print_offset(FILE *out, int rx_hz, int tx_hz) { int delta = tx_hz - rx_hz; if (delta == 0) { fprintf(out, "+0 "); } else if (delta > 0 && delta/50000 <= 255) { if (delta % 1000000 == 0) fprintf(out, "+%-7u", delta / 1000000); else fprintf(out, "+%-7.3f", delta / 1000000.0); } else if (delta < 0 && -delta/50000 <= 255) { delta = - delta; if (delta % 1000000 == 0) fprintf(out, "-%-7u", delta / 1000000); else fprintf(out, "-%-7.3f", delta / 1000000.0); } else { // Cross band mode. fprintf(out, " %-7.4f", tx_hz / 1000000.0); } } // // Print full information about the device configuration. // static void uv380_print_config(FILE *out, int verbose) { int i; fprintf(out, "Radio: TYT MD-UV380\n"); // // Memory channels. // fprintf(out, "\n"); if (verbose) { fprintf(out, "# Table of preprogrammed channels.\n"); fprintf(out, "# 1) Channel number: 1-%d\n", NCHAN); fprintf(out, "# 2) Name: up to 6 characters, no spaces\n"); fprintf(out, "# 3) Receive frequency in MHz\n"); fprintf(out, "# 4) Transmit frequency or +/- offset in MHz\n"); fprintf(out, "# 5) Squelch tone for receive, or '-' to disable\n"); fprintf(out, "# 6) Squelch tone for transmit, or '-' to disable\n"); fprintf(out, "# 7) Transmit power: High, Mid, Low\n"); fprintf(out, "# 8) Modulation: Wide, Narrow, AM\n"); fprintf(out, "# 9) Scan mode: +, -, Only\n"); fprintf(out, "#\n"); } fprintf(out, "Channel Name Receive Transmit Power Modulation Scan\n"); for (i=0; i= 108 && mhz <= 520) return 1; if (mhz >= 700 && mhz <= 999) return 1; return 0; } // // Parse one line of memory channel table. // Start_flag is 1 for the first table row. // Return 0 on failure. // static int parse_channel(int first_row, char *line) { char num_str[256], name_str[256], rxfreq_str[256], offset_str[256]; char power_str[256], wide_str[256], scan_str[256]; int num, tmode, power, wide, scan, isam; double rx_mhz, tx_mhz; if (sscanf(line, "%s %s %s %s %s %s %s", num_str, name_str, rxfreq_str, offset_str, power_str, wide_str, scan_str) != 9) return 0; num = atoi(num_str); if (num < 1 || num > NCHAN) { fprintf(stderr, "Bad channel number.\n"); return 0; } if (sscanf(rxfreq_str, "%lf", &rx_mhz) != 1 || ! is_valid_frequency(rx_mhz)) { fprintf(stderr, "Bad receive frequency.\n"); return 0; } if (sscanf(offset_str, "%lf", &tx_mhz) != 1) { badtx: fprintf(stderr, "Bad transmit frequency.\n"); return 0; } if (offset_str[0] == '-' || offset_str[0] == '+') tx_mhz += rx_mhz; if (! is_valid_frequency(tx_mhz)) goto badtx; //TODO tmode = 0; if (strcasecmp("High", power_str) == 0) { power = 0; } else if (strcasecmp("Mid", power_str) == 0) { power = 1; } else if (strcasecmp("Low", power_str) == 0) { power = 2; } else { fprintf(stderr, "Bad power level.\n"); return 0; } if (strcasecmp("Wide", wide_str) == 0) { wide = 1; isam = 0; } else if(strcasecmp("Narrow", wide_str) == 0) { wide = 0; isam = 0; } else if(strcasecmp("AM", wide_str) == 0) { wide = 1; isam = 1; } else { fprintf(stderr, "Bad modulation width.\n"); return 0; } if (*scan_str == '+') { scan = 0; } else if (*scan_str == '-') { scan = 1; } else if (strcasecmp("Only", scan_str) == 0) { scan = 2; } else { fprintf(stderr, "Bad scan flag.\n"); return 0; } if (first_row) { // On first entry, erase the channel table. int i; for (i=0; i NZONES) { fprintf(stderr, "Bad zone number.\n"); return 0; } if (first_row) { // On first entry, erase the Zones table. memset(&radio_mem[OFFSET_ZONES], 0, NZONES * 0x80); } if (*chan_str == '-') return 1; char *str = chan_str; int nchan = 0; int range = 0; int last = 0; // Parse channel list. for (;;) { char *eptr; int cnum = strtoul(str, &eptr, 10); if (eptr == str) { fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", bnum, str); return 0; } if (cnum < 1 || cnum > NCHAN) { fprintf(stderr, "Zone %d: wrong channel number %d.\n", bnum, cnum); return 0; } if (range) { // Add range. int c; for (c=last; c