dmrconfig/d868uv.c
2018-11-14 19:40:18 -08:00

2829 lines
79 KiB
C

/*
* Interface to Anytone D868UV.
*
* Copyright (C) 2018 Serge Vakulenko, KK6ABQ
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/stat.h>
#include "radio.h"
#include "util.h"
//
// Sizes of configuration tables.
//
#define NCHAN 4000
#define NCONTACTS 10000
#define NZONES 250
#define NGLISTS 250
#define NSCANL 250
#define NMESSAGES 100
//
// Offsets in the image file.
//
#define OFFSET_BANK1 0x000040 // Channels
#define OFFSET_ZONELISTS 0x03e8c0 // Channel lists of zones
#define OFFSET_SCANLISTS 0x05dcc0 // Scanlists
#define OFFSET_MESSAGES 0x069f40 // Messages
#define OFFSET_ZONE_MAP 0x070940 // Bitmap of valid zones
#define OFFSET_SCANL_MAP 0x070980 // Bitmap of valid scanlists
#define OFFSET_CHAN_MAP 0x070a40 // Bitmap of valid channels
#define OFFSET_SETTINGS 0x071600 // General settings
#define OFFSET_ZCHAN_A 0x071700 // Zone A channel
#define OFFSET_ZCHAN_B 0x071900 // Zone B channel
#define OFFSET_ZONENAMES 0x071dc0 // Names of zones
#define OFFSET_RADIOID 0x073d00 // Table of radio IDs
#define OFFSET_CONTACT_LIST 0x076500 // List of valid contact indices
#define OFFSET_CONTACT_MAP 0x080140 // Bitmap of invalid contacts
#define OFFSET_CONTACTS 0x080640 // Contacts
#define OFFSET_GLISTS 0x174b00 // RX group lists
//
// Addresses in the radio flash memory.
//
#define ADDR_CALLDB_LIST 0x04000000 // Map of callsign database
#define ADDR_CONT_ID_LIST 0x04280000 // Map of contact IDs to contacts
#define ADDR_CALLDB_SIZE 0x044c0000 // Sizes of callsign database
#define ADDR_CALLDB_DATA 0x04500000 // Data of callsign database
#define GET_SETTINGS() ((general_settings_t*) &radio_mem[OFFSET_SETTINGS])
#define GET_RADIOID() ((radioid_t*) &radio_mem[OFFSET_RADIOID])
#define GET_ZONEMAP() (&radio_mem[OFFSET_ZONE_MAP])
#define GET_CONTACT_MAP() (&radio_mem[OFFSET_CONTACT_MAP])
#define GET_CONTACT_LIST() ((uint32_t*) &radio_mem[OFFSET_CONTACT_LIST])
#define GET_SCANL_MAP() (&radio_mem[OFFSET_SCANL_MAP])
#define GET_ZONENAME(i) (&radio_mem[OFFSET_ZONENAMES + (i)*32])
#define GET_ZONE_CHAN_A(i) ((i) + (uint16_t*) &radio_mem[OFFSET_ZCHAN_A])
#define GET_ZONE_CHAN_B(i) ((i) + (uint16_t*) &radio_mem[OFFSET_ZCHAN_B])
#define GET_ZONELIST(i) ((uint16_t*) &radio_mem[OFFSET_ZONELISTS + (i)*512])
#define GET_CONTACT(i) ((contact_t*) &radio_mem[OFFSET_CONTACTS + (i)*100])
#define GET_GROUPLIST(i) ((grouplist_t*) &radio_mem[OFFSET_GLISTS + (i)*320])
#define GET_SCANLIST(i) ((scanlist_t*) &radio_mem[OFFSET_SCANLISTS + (i)*192])
#define GET_MESSAGE(i) ((uint8_t*) &radio_mem[OFFSET_MESSAGES + (i)*256])
#define VALID_TEXT(txt) (*(txt) != 0 && *(txt) != 0xff)
#define VALID_GROUPLIST(gl) ((gl)->member[0] != 0xffffffff && VALID_TEXT((gl)->name))
//
// Size of memory image.
// Essentialy a sum of all fragments defined ind868um-map.h.
//
#define MEMSZ 1606528
//
// D868UV radio has a huge internal address space, more than 64 Mbytes.
// The configuration data are dispersed over this space.
// Here is a table of fragments: starting address and length.
// We read these fragments and save them into a file continuously.
//
typedef struct {
unsigned address;
unsigned length;
unsigned offset;
} fragment_t;
static fragment_t region_map[] = {
#include "d868uv-map.h"
};
//
// Channel data.
//
typedef struct {
// Bytes 0-7
uint32_t rx_frequency; // RX Frequency: 8 digits BCD
uint32_t tx_offset; // TX Offset: 8 digits BCD
// Byte 8
uint8_t channel_mode : 2, // Mode: Analog or Digital
#define MODE_ANALOG 0 // Analog
#define MODE_DIGITAL 1 // Digital
#define MODE_A_D 2 // A+D, transmit analog
#define MODE_D_A 3 // D+A, transmit digital
power : 2, // Power: Low, Middle, High, Turbo
#define POWER_LOW 0
#define POWER_MIDDLE 1
#define POWER_HIGH 2
#define POWER_TURBO 3
bandwidth : 1, // Bandwidth: 12.5 or 25 kHz
#define BW_12_5_KHZ 0
#define BW_25_KHZ 1
_unused8 : 1, // 0
repeater_mode : 2; // Sign of TX frequency offset
#define RM_SIMPLEX 0 // TX frequency = RX frequency
#define RM_TXPOS 1 // Positive TX offset
#define RM_TXNEG 2 // Negative TX offset
// Byte 9
uint8_t rx_ctcss : 1, // CTCSS Decode
rx_dcs : 1, // DCS Decode
tx_ctcss : 1, // CTCSS Encode
tx_dcs : 1, // DCS Encode
reverse : 1, // Reverse
rx_only : 1, // TX Prohibit
call_confirm : 1, // Call Confirmation
talkaround : 1; // Talk Around
// Bytes 10-15
uint8_t ctcss_transmit; // CTCSS Encode: 0=62.5, 50=254.1, 51=Define
uint8_t ctcss_receive; // CTCSS Decode: 0=62.5, 50=254.1, 51=Define
uint16_t dcs_transmit; // DCS Encode: 0=D000N, 17=D021N, 1023=D777I
uint16_t dcs_receive; // DCS Decode: 0=D000N, 17=D021N, 1023=D777I
// Bytes 16-19
uint16_t custom_ctcss; // 0x09cf=251.1, 0x0a28=260
uint8_t tone2_decode; // 2Tone Decode: 0x00=1, 0x0f=16
uint8_t _unused19; // 0
// Bytes 20-23
uint16_t contact_index; // Contact: 0=Contact1, 1=Contact2, ...
uint16_t _unused22; // 0
// Byte 24
uint8_t id_index; // Index in Radio ID table
// Byte 25
uint8_t ptt_id : 2, // PTT ID
#define PTTID_OFF 0
#define PTTID_START 1
#define PTTID_END 2
#define PTTID_START_END 3
_unused25_1 : 2, // 0
squelch_mode : 1, // Squelch Mode
#define SQ_CARRIER 0 // Carrier
#define SQ_TONE 1 // CTCSS/DCS
_unused25_2 : 3; // 0
// Byte 26
uint8_t tx_permit : 2, // TX Permit
#define PERMIT_ALWAYS 0 // Always
#define PERMIT_CH_FREE 1 // Channel Free
#define PERMIT_CC_DIFF 2 // Different Color Code
#define PERMIT_CC_SAME 3 // Same Color Code
_unused26_1 : 2, // 0
_opt_signal : 2, // Optional Signal
#define OPTSIG_OFF 0 // Off
#define OPTSIG_DTMF 1 // DTMF
#define OPTSIG_2TONE 2 // 2Tone
#define OPTSIG_5TONE 3 // 5Tone
_unused26_2 : 2; // 0
// Bytes 27-31
uint8_t scan_list_index; // Scan List: 0xff=None, 0=ScanList1...
uint8_t group_list_index; // Receive Group List: 0xff=None, 0=GroupList1...
uint8_t id_2tone; // 2Tone ID: 0=1, 0x17=24
uint8_t id_5tone; // 5Tone ID: 0=1, 0x63=100
uint8_t id_dtmf; // DTMF ID: 0=1, 0x0f=16
// Byte 32
uint8_t color_code; // Color Code: 0-15
// Byte 33
uint8_t slot2 : 1, // Slot: Slot2
_unused33_1 : 1, // 0
simplex_tdma : 1, // Simplex TDMA: On
_unused33_2 : 1, // 0
tdma_adaptive : 1, // TDMA Adaptive: On
_unused33_3 : 1, // 0
enh_encryption : 1, // Encryption Type: Enhanced Encryption
work_alone : 1; // Work Alone: On
// Byte 34
uint8_t encryption; // Digital Encryption: 1-32, 0=Off
// Bytes 35-51
uint8_t name[16]; // Channel Name, zero filled
uint8_t _unused51; // 0
// Byte 52
uint8_t ranging : 1, // Ranging: On
through_mode : 1, // Through Mode: On
_unused52 : 6; // 0
// Byte 53
uint8_t aprs_report : 1, // APRS Report: On
_unused53 : 7; // 0
// Bytes 54-63
uint8_t aprs_channel; // APRS Report Channel: 0x00=1, ... 0x07=8
uint8_t _unused55[9]; // 0
} channel_t;
//
// General settings: 0x640 bytes at 0x02500000.
//
typedef struct {
// Bytes 0-5.
uint8_t _unused0[6];
// Bytes 6-7.
uint8_t power_on; // Power-on Interface
#define PWON_DEFAULT 0 // Default
#define PWON_CUST_CHAR 1 // Custom Char
#define PWON_CUST_PICT 2 // Custom Picture
uint8_t _unused7;
// Bytes 8-0x5ff.
uint8_t _unused8[0x5f8];
// Bytes 0x600-0x61f
uint8_t intro_line1[16]; // Up to 14 characters
uint8_t intro_line2[16]; // Up to 14 characters
// Bytes 0x620-0x63f
uint8_t password[16]; // Up to 8 ascii digits
uint8_t _unused630[16]; // 0xff
} general_settings_t;
//
// Radio ID table: 250 entries, 0x1f40 bytes at 0x02580000.
//
typedef struct {
// Bytes 0-3.
uint8_t id[4]; // Up to 8 BCD digits
#define GET_ID(x) (((x)[0] >> 4) * 10000000 +\
((x)[0] & 15) * 1000000 +\
((x)[1] >> 4) * 100000 +\
((x)[1] & 15) * 10000 +\
((x)[2] >> 4) * 1000 +\
((x)[2] & 15) * 100 +\
((x)[3] >> 4) * 10 +\
((x)[3] & 15))
// Byte 4.
uint8_t _unused4; // 0
// Bytes 5-20
uint8_t name[16]; // Name
// Bytes 21-31
uint8_t _unused21[11]; // 0
} radioid_t;
//
// Contact data: 100 bytes per record.
//
typedef struct {
// Byte 0
uint8_t type; // Call Type: Group Call, Private Call or All Call
#define CALL_PRIVATE 0
#define CALL_GROUP 1
#define CALL_ALL 2
// Bytes 1-16
uint8_t name[16]; // Contact Name (ASCII)
// Bytes 17-34
uint8_t _unused17[18]; // 0
// Bytes 35-38
uint8_t id[4]; // Call ID: BCD coded 8 digits
#define GET_ID(x) (((x)[0] >> 4) * 10000000 +\
((x)[0] & 15) * 1000000 +\
((x)[1] >> 4) * 100000 +\
((x)[1] & 15) * 10000 +\
((x)[2] >> 4) * 1000 +\
((x)[2] & 15) * 100 +\
((x)[3] >> 4) * 10 +\
((x)[3] & 15))
#define CONTACT_ID(ct) GET_ID((ct)->id)
// Byte 39
uint8_t call_alert; // Call Alert: None, Ring, Online Alert
#define ALERT_NONE 0
#define ALERT_RING 1
#define ALERT_ONLINE 2
// Bytes 40-99
uint8_t _unused40[60]; // 0
} contact_t;
//
// Group list data.
//
typedef struct {
// Bytes 0-255
uint32_t member[64]; // Contacts: 0=Contact1, 0xffffffff=Empty
// Bytes 256-319
uint8_t name[35]; // Group List Name (ASCII)
uint8_t unused[29]; // 0
} grouplist_t;
//
// Scan list data: 192 bytes.
//
typedef struct {
// Bytes 0-1
uint8_t _unused0; // 0
uint8_t prio_ch_select; // Priority Channel Select
#define PRIO_CHAN_OFF 0 // Off
#define PRIO_CHAN_SEL1 1 // Priority Channel Select1
#define PRIO_CHAN_SEL2 2 // Priority Channel Select2
#define PRIO_CHAN_SEL12 3 // Priority Channel Select1 + Priority Channel Select2
// Bytes 2-5
uint16_t priority_ch1; // Priority Channel 1: 0=Current Channel, 0xffff=Off
uint16_t priority_ch2; // Priority Channel 2: 0=Current Channel, 0xffff=Off
// Bytes 6-13
uint16_t look_back_a; // Look Back Time A, sec*10
uint16_t look_back_b; // Look Back Time B, sec*10
uint16_t dropout_delay; // Dropout Delay Time, sec*10
uint16_t dwell; // Dwell Time, sec*10
// Byte 14
uint8_t revert_channel; // Revert Channel
#define REVCH_SELECTED 0 // Selected
#define REVCH_SEL_TB 1 // Selected + TalkBack
#define REVCH_PRIO_CH1 2 // Priority Channel Select1
#define REVCH_PRIO_CH2 3 // Priority Channel Select2
#define REVCH_LAST_CALLED 4 // Last Called
#define REVCH_LAST_USED 5 // Last Used
#define REVCH_PRIO_CH1_TB 6 // Priority Channel Select1 + TalkBack
#define REVCH_PRIO_CH2_TB 7 // Priority Channel Select2 + TalkBack
// Bytes 15-31
uint8_t name[16]; // Scan List Name (ASCII)
uint8_t _unused31; // 0
// Bytes 32-131
uint16_t member[50]; // Channels, 0xffff=empty
// Bytes 132-191
uint8_t _unused132[60]; // 0
} scanlist_t;
static const char *POWER_NAME[] = { "Low", "Mid", "High", "Turbo" };
static const char *DIGITAL_ADMIT_NAME[] = { "-", "Free", "NColor", "Color" };
static const char *ANALOG_ADMIT_NAME[] = { "-", "Free", "Tone", "Tone" };
static const char *BANDWIDTH[] = { "12.5", "25" };
static const char *CONTACT_TYPE[] = { "Private", "Group", "All", "Unknown" };
static const char *ALERT_TYPE[] = { "-", "+", "Online", "Unknown" };
//
// CTCSS tones, Hz*10.
//
#define NCTCSS 51
static const int CTCSS_TONES[NCTCSS] = {
625, 670, 693, 719, 744, 770, 797, 825, 854, 885,
915, 948, 974, 1000, 1035, 1072, 1109, 1148, 1188, 1230,
1273, 1318, 1365, 1413, 1462, 1514, 1567, 1598, 1622, 1655,
1679, 1713, 1738, 1773, 1799, 1835, 1862, 1899, 1928, 1966,
1995, 2035, 2065, 2107, 2181, 2257, 2291, 2336, 2418, 2503,
2541,
};
//
// Print a generic information about the device.
//
static void d868uv_print_version(radio_device_t *radio, FILE *out)
{
// Empty.
}
//
// Return true when the specified region has to be skipped.
// Skip unused channels, contacts, zones and scanlists.
//
static int skip_region(unsigned addr, unsigned file_offset, uint8_t *mem, unsigned nbytes)
{
int index;
// Channels.
if (addr >= 0x00800000 && addr < 0x01000000) {
index = (file_offset - OFFSET_BANK1) / 64;
if (index < NCHAN) {
uint8_t *bitmap = &radio_mem[OFFSET_CHAN_MAP];
if ((bitmap[index / 8] >> (index & 7)) & 1) {
// Channel is valid, don't skip.
return 0;
}
// Invalid channel: skip it, erase data.
if (mem) {
memset(mem, 0xff, nbytes);
}
return 1;
}
}
// Contacts.
if (addr >= 0x02680000 && addr < 0x02900000) {
index = (file_offset - OFFSET_CONTACTS) / 100;
if (index < NCONTACTS) {
uint8_t *cmap = GET_CONTACT_MAP();
if ((cmap[index / 8] >> (index & 7)) & 1) {
// Invalid contact: skip it, erase data.
if (mem) {
memset(mem, 0xff, nbytes);
}
return 1;
}
// Contact is valid, don't skip.
return 0;
}
}
// Zones.
if (addr >= 0x01000000 && addr < 0x01080000) {
index = (file_offset - OFFSET_ZONELISTS) / 512;
if (index < NZONES) {
uint8_t *zmap = GET_ZONEMAP();
if ((zmap[index / 8] >> (index & 7)) & 1) {
// Zone is valid, don't skip.
return 0;
}
// Invalid zone: skip it, erase data.
if (mem) {
memset(mem, 0xff, nbytes);
}
return 1;
}
}
// Scanlists.
if (addr >= 0x01080000 && addr < 0x01640000) {
index = (file_offset - OFFSET_SCANLISTS) / 192;
if (index < NSCANL) {
uint8_t *slmap = GET_SCANL_MAP();
if ((slmap[index / 8] >> (index & 7)) & 1) {
// Scanlist is valid, don't skip.
return 0;
}
// Invalid scanlist: skip it, erase data.
if (mem) {
memset(mem, 0xff, nbytes);
}
return 1;
}
}
return 0;
}
//
// Read memory image from the device.
//
static void d868uv_download(radio_device_t *radio)
{
fragment_t *f;
// Read bitmaps first.
for (f=region_map; f->length; f++) {
if (f->offset != 0) {
serial_read_region(f->address, &radio_mem[f->offset], f->length);
}
}
// Read other regions sequentially.
unsigned file_offset = 0;
unsigned bytes_transferred = 0;
unsigned last_printed = 0;
//printf("Address Offset\n");
for (f=region_map; f->length; f++) {
unsigned addr = f->address;
unsigned nbytes = f->length;
//printf("%08x %06x\n", addr, file_offset);
while (nbytes > 0) {
unsigned n = (nbytes > 64) ? 64 : nbytes;
if (! skip_region(addr, file_offset, &radio_mem[file_offset], n)) {
if (f->offset == 0)
serial_read_region(addr, &radio_mem[file_offset], n);
bytes_transferred += n;
}
file_offset += n;
addr += n;
nbytes -= n;
if (bytes_transferred / (32*1024) != last_printed) {
fprintf(stderr, "#");
fflush(stderr);
last_printed = bytes_transferred / (32*1024);
}
}
}
if (file_offset != MEMSZ) {
fprintf(stderr, "\nWrong MEMSZ=%u for D868UV!\n", MEMSZ);
fprintf(stderr, "Should be %u; check d868uv-map.h!\n", file_offset);
exit(-1);
}
}
//
// Get contact by index.
//
static contact_t *get_contact(int i)
{
uint8_t *cmap = GET_CONTACT_MAP();
if ((cmap[i / 8] >> (i & 7)) & 1)
return 0;
return GET_CONTACT(i);
}
//
// Write memory image to the device.
//
static void d868uv_upload(radio_device_t *radio, int cont_flag)
{
fragment_t *f;
unsigned file_offset = 0;
unsigned bytes_transferred = 0;
unsigned last_printed = 0;
for (f=region_map; f->length; f++) {
unsigned addr = f->address;
unsigned nbytes = f->length;
while (nbytes > 0) {
unsigned n = (nbytes > 64) ? 64 : nbytes;
if (! skip_region(addr, file_offset, 0, 0)) {
serial_write_region(addr, &radio_mem[file_offset], n);
bytes_transferred += n;
}
file_offset += n;
addr += n;
nbytes -= n;
if (bytes_transferred / (32*1024) != last_printed) {
fprintf(stderr, "#");
fflush(stderr);
last_printed = bytes_transferred / (32*1024);
}
}
}
if (file_offset != MEMSZ) {
fprintf(stderr, "\nWrong MEMSZ=%u for D868UV!\n", MEMSZ);
fprintf(stderr, "Should be %u; check d868uv-map.h!\n", file_offset);
exit(-1);
}
//
// Build and upload a map of IDs to contacts.
// The map has to be sorted by ID.
//
uint64_t map[8*NCONTACTS + 72];
int index, ncontacts = 0;
memset(map, 0xff, sizeof(map));
for (index=0; index<NCONTACTS; index++) {
contact_t *ct = get_contact(index);
if (!ct)
continue;
// A map entry consists of 8 bytes.
// Bit 0: set for groups.
// Bits 31-1: DMR ID of the contact.
// Bytes 4-7: contact index.
uint64_t item = ct->id[0] << 25 | ct->id[1] << 17 |
ct->id[2] << 9 | ct->id[3] << 1;
if (ct->type == CALL_GROUP)
item |= 1;
item |= (uint64_t) index << 32;
int k;
for (k=0; k<NCONTACTS; k++) {
if (map[k] == item) {
// The item is already in the list.
break;
}
if (map[k] == 0xffffffffffffffff) {
// Append to the end of the list.
map[k] = item;
ncontacts = k + 1;
break;
}
if ((uint32_t)map[k] > (uint32_t)item) {
// Insert item there and shift the rest.
uint64_t prev = map[k];
map[k] = item;
item = prev;
}
}
}
//printf("\n");
//print_hex((uint8_t*)map, ncontacts*8 + 8);
//printf("\n");
serial_write_region(ADDR_CONT_ID_LIST, (uint8_t*)map, (ncontacts*8 + 8 + 63) / 64 * 64);
}
//
// Check whether the memory image is compatible with this device.
//
static int d868uv_is_compatible(radio_device_t *radio)
{
if (memcmp("D868UVE", (char*)&radio_mem[0], 7) == 0)
return 1;
if (memcmp("D6X2UV", (char*)&radio_mem[0], 6) == 0)
return 1;
return 0;
}
static void print_id(FILE *out, int verbose)
{
radioid_t *ri = GET_RADIOID();
unsigned id = GET_ID(ri->id);
if (verbose)
fprintf(out, "\n# Unique DMR ID and name of this radio.");
fprintf(out, "\nID: %u\nName: ", id);
if (VALID_TEXT(ri->name)) {
print_ascii(out, ri->name, 16, 0);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
static void print_intro(FILE *out, int verbose)
{
general_settings_t *gs = GET_SETTINGS();
if (verbose)
fprintf(out, "\n# Text displayed when the radio powers up.\n");
fprintf(out, "Intro Line 1: ");
if (VALID_TEXT(gs->intro_line1)) {
print_ascii(out, gs->intro_line1, 14, 0);
} else {
fprintf(out, "-");
}
fprintf(out, "\nIntro Line 2: ");
if (VALID_TEXT(gs->intro_line2)) {
print_ascii(out, gs->intro_line2, 14, 0);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
//
// Get channel bank by index.
//
static channel_t *get_bank(int i)
{
return (channel_t*) &radio_mem[OFFSET_BANK1 + i*0x2000];
}
//
// Get channel by index.
//
static channel_t *get_channel(int i)
{
channel_t *bank = get_bank(i >> 7);
uint8_t *bitmap = &radio_mem[OFFSET_CHAN_MAP];
if ((bitmap[i / 8] >> (i & 7)) & 1)
return &bank[i % 128];
else
return 0;
}
//
// Do we have any channels of given mode?
//
static int have_channels(int mode)
{
int i;
for (i=0; i<NCHAN; i++) {
channel_t *ch = get_channel(i);
if (!ch)
continue;
if (ch->channel_mode == mode)
return 1;
// Treat D+A mode as digital.
if (mode == MODE_DIGITAL && ch->channel_mode == MODE_D_A)
return 1;
// Treat A+D mode as analog.
if (mode == MODE_ANALOG && ch->channel_mode == MODE_A_D)
return 1;
}
return 0;
}
//
// Return true when any contacts are present.
//
static int have_contacts()
{
uint8_t *cmap = GET_CONTACT_MAP();
int i;
for (i=0; i<(NCONTACTS+7)/8; i++) {
if (cmap[i] != 0xff)
return 1;
}
return 0;
}
//
// Print frequency (BCD value).
//
static void print_rx_freq(FILE *out, unsigned data)
{
fprintf(out, "%d%d%d.%d%d%d", (data >> 4) & 15, data & 15,
(data >> 12) & 15, (data >> 8) & 15,
(data >> 20) & 15, (data >> 16) & 15);
if (((data >> 24) & 0xff) == 0) {
fputs(" ", out);
} else {
fprintf(out, "%d", (data >> 28) & 15);
if (((data >> 24) & 15) == 0) {
fputs(" ", out);
} else {
fprintf(out, "%d", (data >> 24) & 15);
}
}
}
//
// Convert a 4-byte frequency value from binary coded decimal
// to integer format (in Hertz).
//
static int bcd_to_hz(unsigned bcd)
{
int a = (bcd >> 4) & 15;
int b = bcd & 15;
int c = (bcd >> 12) & 15;
int d = (bcd >> 8) & 15;
int e = (bcd >> 20) & 15;
int f = (bcd >> 16) & 15;
int g = (bcd >> 28) & 15;
int h = (bcd >> 24) & 15;
return (((((((a*10 + b) * 10 + c) * 10 + d) * 10 + e) * 10 + f) * 10 + g) * 10 + h) * 10;
}
//
// Print the transmit offset or frequency.
// TX value is a delta.
//
static void print_tx_offset(FILE *out, unsigned tx_offset_bcd, unsigned mode)
{
int offset;
switch (mode) {
default:
case RM_SIMPLEX: // TX frequency = RX frequency
fprintf(out, "+0 ");
break;
case RM_TXPOS: // Positive TX offset
offset = bcd_to_hz(tx_offset_bcd);
fprintf(out, "+");
print_mhz(out, offset);
break;
case RM_TXNEG: // Negative TX offset
offset = bcd_to_hz(tx_offset_bcd);
fprintf(out, "-");
print_mhz(out, offset);
break;
}
}
//
// Return scan list index for specified channel.
// It depends on radio type.
//
static int get_scanlist_index(radio_device_t *radio, channel_t *ch)
{
if (radio == &radio_dmr6x2) {
// Radio DMR-6x2 has eight scan lists per channel.
return ch->aprs_channel;
} else {
return ch->scan_list_index;
}
}
//
// Print base parameters of the channel:
// Name
// RX Frequency
// TX Frequency
// Power
// Scan List
// TOT
// RX Only
//
static void print_chan_base(FILE *out, radio_device_t *radio, channel_t *ch, int cnum)
{
fprintf(out, "%5d ", cnum);
print_ascii(out, ch->name, 16, 1);
fprintf(out, " ");
print_rx_freq(out, ch->rx_frequency);
fprintf(out, " ");
print_tx_offset(out, ch->tx_offset, ch->repeater_mode);
fprintf(out, "%-5s ", POWER_NAME[ch->power]);
int scanlist_index = get_scanlist_index(radio, ch);
if (scanlist_index == 0xff)
fprintf(out, "- ");
else
fprintf(out, "%-4d ", scanlist_index + 1);
// Transmit timeout timer on D868UV is configured globally,
// not per channel. So we don't print it here.
fprintf(out, "- ");
fprintf(out, "%c ", "-+"[ch->rx_only]);
}
static void print_digital_channels(FILE *out, radio_device_t *radio, int verbose)
{
int i;
if (verbose) {
fprintf(out, "# Table of digital channels.\n");
fprintf(out, "# 1) Channel number: 1-%d\n", NCHAN);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Receive frequency in MHz\n");
fprintf(out, "# 4) Transmit frequency or +/- offset in MHz\n");
fprintf(out, "# 5) Transmit power: High, Mid, Low, Turbo\n");
fprintf(out, "# 6) Scan list: - or index in Scanlist table\n");
fprintf(out, "# 7) Transmit timeout timer: (unused)\n");
fprintf(out, "# 8) Receive only: -, +\n");
fprintf(out, "# 9) Admit criteria: -, Free, Color, NColor\n");
fprintf(out, "# 10) Color code: 0, 1, 2, 3... 15\n");
fprintf(out, "# 11) Time slot: 1 or 2\n");
fprintf(out, "# 12) Receive group list: - or index in Grouplist table\n");
fprintf(out, "# 13) Contact for transmit: - or index in Contacts table\n");
fprintf(out, "#\n");
}
fprintf(out, "Digital Name Receive Transmit Power Scan TOT RO Admit Color Slot RxGL TxContact");
fprintf(out, "\n");
for (i=0; i<NCHAN; i++) {
channel_t *ch = get_channel(i);
if (!ch)
continue;
if (ch->channel_mode != MODE_DIGITAL && ch->channel_mode != MODE_D_A) {
// Select digital channels
continue;
}
print_chan_base(out, radio, ch, i+1);
// Print digital parameters of the channel:
// Admit Criteria
// Color Code
// Repeater Slot
// Group List
// Contact Name
fprintf(out, "%-6s ", DIGITAL_ADMIT_NAME[ch->tx_permit]);
fprintf(out, "%-5d %-3d ", ch->color_code, 1 + ch->slot2);
if (ch->group_list_index == 0xff)
fprintf(out, "- ");
else
fprintf(out, "%-4d ", ch->group_list_index + 1);
if (ch->contact_index == 0xffff)
fprintf(out, "-");
else
fprintf(out, "%-4d", ch->contact_index + 1);
// Print contact name as a comment.
if (ch->contact_index != 0xffff) {
contact_t *ct = get_contact(ch->contact_index);
if (ct) {
fprintf(out, " # ");
print_ascii(out, ct->name, 16, 0);
}
}
fprintf(out, "\n");
}
}
//
// Print CTSS tone.
//
static void print_ctcss(FILE *out, unsigned index, unsigned custom)
{
int dhz = (index < NCTCSS) ? CTCSS_TONES[index] : custom;
unsigned a = dhz / 1000;
unsigned b = (dhz / 100) % 10;
unsigned c = (dhz / 10) % 10;
unsigned d = dhz % 10;
if (a == 0)
fprintf(out, "%d%d.%d ", b, c, d);
else
fprintf(out, "%d%d%d.%d", a, b, c, d);
}
//
// Print DCS tone.
//
static void print_dcs(FILE *out, unsigned dcs)
{
unsigned i = (dcs >> 9) & 1;
unsigned a = (dcs >> 6) & 7;
unsigned b = (dcs >> 3) & 7;
unsigned c = dcs & 7;
fprintf(out, "D%d%d%d%c", a, b, c, i ? 'I' : 'N');
}
static void print_analog_channels(FILE *out, radio_device_t *radio, int verbose)
{
int i;
if (verbose) {
fprintf(out, "# Table of analog channels.\n");
fprintf(out, "# 1) Channel number: 1-%d\n", NCHAN);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Receive frequency in MHz\n");
fprintf(out, "# 4) Transmit frequency or +/- offset in MHz\n");
fprintf(out, "# 5) Transmit power: High, Mid, Low, Turbo\n");
fprintf(out, "# 6) Scan list: - or index\n");
fprintf(out, "# 7) Transmit timeout timer: (unused)\n");
fprintf(out, "# 8) Receive only: -, +\n");
fprintf(out, "# 9) Admit criteria: -, Free, Tone\n");
fprintf(out, "# 10) Squelch level: Normal (unused)\n");
fprintf(out, "# 11) Guard tone for receive, or '-' to disable\n");
fprintf(out, "# 12) Guard tone for transmit, or '-' to disable\n");
fprintf(out, "# 13) Bandwidth in kHz: 12.5, 25\n");
fprintf(out, "#\n");
}
fprintf(out, "Analog Name Receive Transmit Power Scan TOT RO Admit Squelch RxTone TxTone Width");
fprintf(out, "\n");
for (i=0; i<NCHAN; i++) {
channel_t *ch = get_channel(i);
if (!ch)
continue;
if (ch->channel_mode != MODE_ANALOG && ch->channel_mode != MODE_A_D) {
// Select analog channels
continue;
}
print_chan_base(out, radio, ch, i+1);
// Print analog parameters of the channel:
// Admit Criteria
// Squelch
// CTCSS/DCS Dec
// CTCSS/DCS Enc
// Bandwidth
fprintf(out, "%-6s ", ANALOG_ADMIT_NAME[ch->tx_permit]);
fprintf(out, "%-7s ", "Normal");
if (ch->rx_ctcss)
print_ctcss(out, ch->ctcss_receive, ch->custom_ctcss);
else if (ch->rx_dcs)
print_dcs(out, ch->dcs_receive);
else
fprintf(out, "- ");
fprintf(out, " ");
if (ch->tx_ctcss)
print_ctcss(out, ch->ctcss_transmit, ch->custom_ctcss);
else if (ch->tx_dcs)
print_dcs(out, ch->dcs_transmit);
else
fprintf(out, "- ");
fprintf(out, " %s", BANDWIDTH[ch->bandwidth]);
fprintf(out, "\n");
}
}
//
// Return true when any zones are present.
//
static int have_zones()
{
uint8_t *zmap = GET_ZONEMAP();
int i;
for (i=0; i<(NZONES+7)/8; i++) {
if (zmap[i] != 0)
return 1;
}
return 0;
}
//
// Return true when any scanlists are present.
//
static int have_scanlists()
{
uint8_t *slmap = GET_SCANL_MAP();
int i;
for (i=0; i<(NSCANL+7)/8; i++) {
if (slmap[i] != 0)
return 1;
}
return 0;
}
//
// Find a zone with given index.
// Return false when zone is not valid.
// Set zname and zlist to a zone name and member list.
//
static int get_zone(int i, uint8_t **zname, uint16_t **zlist)
{
uint8_t *zmap = GET_ZONEMAP();
if ((zmap[i / 8] >> (i & 7)) & 1) {
// Zone is valid.
*zname = GET_ZONENAME(i);
*zlist = GET_ZONELIST(i);
return 1;
} else {
return 0;
}
}
//
// Get scanlist by index.
//
static scanlist_t *get_scanlist(int i)
{
uint8_t *slmap = GET_SCANL_MAP();
if ((slmap[i / 8] >> (i & 7)) & 1)
return GET_SCANLIST(i);
return 0;
}
static void print_chanlist16(FILE *out, uint16_t *unsorted, int nchan)
{
int last = -1;
int range = 0;
int n;
uint16_t data[nchan];
// Sort the list before printing.
memcpy(data, unsorted, nchan * sizeof(uint16_t));
qsort(data, nchan, sizeof(uint16_t), compare_index_ffff);
for (n=0; n<nchan; n++) {
int cnum = data[n];
if (cnum == 0xffff)
break;
cnum++;
if (cnum == last+1) {
range = 1;
} else {
if (range) {
fprintf(out, "-%d", last);
range = 0;
}
if (n > 0)
fprintf(out, ",");
fprintf(out, "%d", cnum);
}
last = cnum;
}
if (range)
fprintf(out, "-%d", last);
}
static void print_chanlist32(FILE *out, uint32_t *unsorted, int nchan)
{
int last = -1;
int range = 0;
int n;
uint32_t data[nchan];
// Sort the list before printing.
memcpy(data, unsorted, nchan * sizeof(uint32_t));
qsort(data, nchan, sizeof(uint32_t), compare_index_ffffffff);
for (n=0; n<nchan; n++) {
int cnum = data[n];
if (cnum == 0xffffffff)
break;
cnum++;
if (cnum == last+1) {
range = 1;
} else {
if (range) {
fprintf(out, "-%d", last);
range = 0;
}
if (n > 0)
fprintf(out, ",");
fprintf(out, "%d", cnum);
}
last = cnum;
}
if (range)
fprintf(out, "-%d", last);
}
static int have_grouplists()
{
int i;
for (i=0; i<NGLISTS; i++) {
grouplist_t *gl = GET_GROUPLIST(i);
if (VALID_GROUPLIST(gl))
return 1;
}
return 0;
}
static int have_messages()
{
int i;
for (i=0; i<NMESSAGES; i++) {
uint8_t *msg = GET_MESSAGE(i);
if (VALID_TEXT(msg))
return 1;
}
return 0;
}
//
// Print full information about the device configuration.
//
static void d868uv_print_config(radio_device_t *radio, FILE *out, int verbose)
{
int i;
fprintf(out, "Radio: %s\n", radio->name);
if (verbose)
d868uv_print_version(radio, out);
//
// Channels.
//
if (have_channels(MODE_DIGITAL)) {
fprintf(out, "\n");
print_digital_channels(out, radio, verbose);
}
if (have_channels(MODE_ANALOG)) {
fprintf(out, "\n");
print_analog_channels(out, radio, verbose);
}
//
// Zones.
//
if (have_zones()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of channel zones.\n");
fprintf(out, "# 1) Zone number: 1-%d\n", NZONES);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) List of channels: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Zone Name Channels\n");
for (i=0; i<NZONES; i++) {
uint8_t *zname;
uint16_t *zlist;
if (!get_zone(i, &zname, &zlist)) {
// Zone is disabled.
continue;
}
fprintf(out, "%5d ", i + 1);
print_ascii(out, zname, 16, 1);
fprintf(out, " ");
if (*zlist != 0xffff) {
print_chanlist16(out, zlist, 250);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
}
//
// Scan lists.
//
if (have_scanlists()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of scan lists.\n");
fprintf(out, "# 1) Scan list number: 1-%d\n", NSCANL);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Priority channel 1: -, Curr or index\n");
fprintf(out, "# 4) Priority channel 2: -, Curr or index\n");
fprintf(out, "# 5) Designated transmit channel: Sel or Last\n");
fprintf(out, "# 6) List of channels: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Scanlist Name PCh1 PCh2 TxCh Channels\n");
for (i=0; i<NSCANL; i++) {
scanlist_t *sl = get_scanlist(i);
if (!sl) {
// Scan list is disabled.
continue;
}
fprintf(out, "%5d ", i + 1);
print_ascii(out, sl->name, 16, 1);
if ((sl->prio_ch_select == PRIO_CHAN_SEL1 ||
sl->prio_ch_select == PRIO_CHAN_SEL12) &&
sl->priority_ch1 != 0xffff) {
if (sl->priority_ch1 == 0) {
fprintf(out, " Curr ");
} else {
fprintf(out, " %-4d ", sl->priority_ch1);
}
} else {
fprintf(out, " - ");
}
if ((sl->prio_ch_select == PRIO_CHAN_SEL2 ||
sl->prio_ch_select == PRIO_CHAN_SEL12) &&
sl->priority_ch2 != 0xffff) {
if (sl->priority_ch2 == 0) {
fprintf(out, "Curr ");
} else {
fprintf(out, "%-4d ", sl->priority_ch2);
}
} else {
fprintf(out, "- ");
}
if (sl->revert_channel == REVCH_LAST_CALLED) {
fprintf(out, "Last ");
} else {
fprintf(out, "Sel ");
}
if (sl->member[0] != 0xffff) {
print_chanlist16(out, sl->member, 50);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
}
//
// Contacts.
//
if (have_contacts()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of contacts.\n");
fprintf(out, "# 1) Contact number: 1-%d\n", NCONTACTS);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Call type: Group, Private, All\n");
fprintf(out, "# 4) Call ID: 1...16777215\n");
fprintf(out, "# 5) Incoming call alert: -, +, Online\n");
fprintf(out, "#\n");
}
fprintf(out, "Contact Name Type ID RxTone\n");
for (i=0; i<NCONTACTS; i++) {
contact_t *ct = get_contact(i);
if (!ct) {
// Contact is disabled
continue;
}
fprintf(out, "%5d ", i+1);
print_ascii(out, ct->name, 16, 1);
fprintf(out, " %-7s %-8d %s\n", CONTACT_TYPE[ct->type & 3],
CONTACT_ID(ct), ALERT_TYPE[ct->call_alert & 3]);
}
}
//
// Group lists.
//
if (have_grouplists()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of group lists.\n");
fprintf(out, "# 1) Group list number: 1-%d\n", NGLISTS);
fprintf(out, "# 2) Name: up to 35 characters, use '_' instead of space\n");
fprintf(out, "# 3) List of contacts: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Grouplist Name Contacts\n");
for (i=0; i<NGLISTS; i++) {
grouplist_t *gl = GET_GROUPLIST(i);
if (!VALID_GROUPLIST(gl)) {
// Group list is disabled.
continue;
}
fprintf(out, "%5d ", i + 1);
print_ascii(out, gl->name, 35, 1);
fprintf(out, " ");
print_chanlist32(out, gl->member, 64);
fprintf(out, "\n");
}
}
//
// Text messages.
//
if (have_messages()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of text messages.\n");
fprintf(out, "# 1) Message number: 1-%d\n", NMESSAGES);
fprintf(out, "# 2) Text: up to 200 characters\n");
fprintf(out, "#\n");
}
fprintf(out, "Message Text\n");
for (i=0; i<NMESSAGES; i++) {
uint8_t *msg = GET_MESSAGE(i);
if (!VALID_TEXT(msg)) {
// Message is disabled
continue;
}
fprintf(out, "%5d ", i+1);
print_ascii(out, msg, 200, 0);
fprintf(out, "\n");
}
}
// General settings.
print_id(out, verbose);
print_intro(out, verbose);
}
//
// Read memory image from the binary file.
//
static void d868uv_read_image(radio_device_t *radio, FILE *img)
{
struct stat st;
// Guess device type by file size.
if (fstat(fileno(img), &st) < 0) {
fprintf(stderr, "Cannot get file size.\n");
exit(-1);
}
switch (st.st_size) {
case MEMSZ:
// IMG file.
if (fread(&radio_mem[0], 1, MEMSZ, img) != MEMSZ) {
fprintf(stderr, "Error reading image data.\n");
exit(-1);
}
break;
default:
fprintf(stderr, "Unrecognized file size %u bytes.\n", (int) st.st_size);
exit(-1);
}
}
//
// Save memory image to the binary file.
//
static void d868uv_save_image(radio_device_t *radio, FILE *img)
{
fwrite(&radio_mem[0], 1, MEMSZ, img);
}
//
// Parse the scalar parameter.
//
static void d868uv_parse_parameter(radio_device_t *radio, char *param, char *value)
{
if (strcasecmp("Radio", param) == 0) {
if (!radio_is_compatible(value)) {
fprintf(stderr, "Incompatible model: %s\n", value);
exit(-1);
}
return;
}
radioid_t *ri = GET_RADIOID();
if (strcasecmp ("Name", param) == 0) {
ascii_decode(ri->name, value, 16, 0);
return;
}
if (strcasecmp ("ID", param) == 0) {
uint32_t id = strtoul(value, 0, 0);
ri->id[0] = ((id / 10000000) << 4) | ((id / 1000000) % 10);
ri->id[1] = ((id / 100000 % 10) << 4) | ((id / 10000) % 10);
ri->id[2] = ((id / 1000 % 10) << 4) | ((id / 100) % 10);
ri->id[3] = ((id / 10 % 10) << 4) | (id % 10);
return;
}
general_settings_t *gs = GET_SETTINGS();
if (strcasecmp ("Intro Line 1", param) == 0) {
ascii_decode_uppercase(gs->intro_line1, value, 14, 0);
gs->power_on = PWON_CUST_CHAR;
return;
}
if (strcasecmp ("Intro Line 2", param) == 0) {
ascii_decode_uppercase(gs->intro_line2, value, 14, 0);
gs->power_on = PWON_CUST_CHAR;
return;
}
fprintf(stderr, "Unknown parameter: %s = %s\n", param, value);
exit(-1);
}
//
// Check that the radio does support this frequency.
//
static int is_valid_frequency(int mhz)
{
if (mhz >= 136 && mhz <= 174)
return 1;
if (mhz >= 400 && mhz <= 480)
return 1;
return 0;
}
//
// Find CTCSS value in standard table.
// Otherwise return NCTCSS.
//
static int ctcss_index(unsigned value)
{
int i;
for (i=0; i<NCTCSS; i++)
if (value == CTCSS_TONES[i])
break;
return i;
}
//
// Set the parameters for a given memory channel.
//
static void setup_channel(radio_device_t *radio, int i, int mode, char *name,
double rx_mhz, double tx_mhz, int power, int scanlist, int rxonly,
int admit, int colorcode, int timeslot, int grouplist, int contact,
int rxtone, int txtone, int width)
{
channel_t *ch = get_bank(i >> 7) + (i % 128);
uint8_t *bitmap = &radio_mem[OFFSET_CHAN_MAP];
bitmap[i / 8] |= 1 << (i & 7);
memset(ch, 0, sizeof(channel_t));
ascii_decode(ch->name, name, 16, 0);
ch->rx_frequency = mhz_to_ghefcdab(rx_mhz);
if (tx_mhz > rx_mhz) {
ch->repeater_mode = RM_TXPOS;
ch->tx_offset = mhz_to_ghefcdab(tx_mhz - rx_mhz);
} else if (tx_mhz < rx_mhz) {
ch->repeater_mode = RM_TXNEG;
ch->tx_offset = mhz_to_ghefcdab(rx_mhz - tx_mhz);
} else {
ch->repeater_mode = RM_SIMPLEX;
ch->tx_offset = 0x00000100;
}
ch->channel_mode = mode;
ch->power = power;
ch->bandwidth = width;
ch->rx_only = rxonly;
ch->slot2 = (timeslot == 2);
ch->color_code = colorcode;
ch->tx_permit = admit;
ch->contact_index = contact - 1;
ch->group_list_index = grouplist - 1;
ch->custom_ctcss = 251.1 * 10;
if (radio == &radio_dmr6x2) {
// Radio DMR-6x2 has eight scan lists per channel.
ch->scan_list_index = 0; // Channel Measure Mode = Off
ch->aprs_channel = scanlist - 1; // Scan list 1
memset(ch->_unused55, 0xff, 7); // Scan lists 2-8 = Disable
} else {
ch->scan_list_index = scanlist - 1;
}
// rxtone and txtone are positive for DCS and negative for CTCSS.
if (rxtone > 0) { // Receive DCS
ch->rx_dcs = 1;
ch->dcs_receive = rxtone - 1;
} else if (rxtone < 0) { // Receive CTCSS
ch->rx_ctcss = 1;
ch->ctcss_receive = ctcss_index(-rxtone);
if (ch->ctcss_receive == NCTCSS) {
ch->custom_ctcss = -rxtone;
}
}
if (txtone > 0) { // Transmit DCS
ch->tx_dcs = 1;
ch->dcs_transmit = txtone - 1;
} else if (txtone < 0) { // Transmit CTCSS
ch->tx_ctcss = 1;
ch->ctcss_transmit = ctcss_index(-txtone);
if (ch->ctcss_transmit == NCTCSS) {
ch->custom_ctcss = -txtone;
}
}
}
//
// Erase all channels.
//
static void erase_channels()
{
memset(&radio_mem[OFFSET_BANK1], 0xff, NCHAN * 64);
memset(&radio_mem[OFFSET_CHAN_MAP], 0, (NCHAN + 7) / 8);
}
//
// Erase all zones.
//
static void erase_zones()
{
int i;
for (i=0; i<NZONES; i++) {
memset(GET_ZONENAME(i), 0xff, 16);
memset(GET_ZONELIST(i), 0xff, 2*250);
}
memset(GET_ZONEMAP(), 0, (NZONES + 7) / 8);
}
//
// Erase all scanlists.
//
static void erase_scanlists()
{
int i;
for (i=0; i<NSCANL; i++) {
memset(GET_SCANLIST(i), 0xff, 192);
}
memset(GET_SCANL_MAP(), 0, (NSCANL + 7) / 8);
}
//
// Parse one line of Digital channel table.
// Start_flag is 1 for the first table row.
// Return 0 on failure.
//
static int parse_digital_channel(radio_device_t *radio, int first_row, char *line)
{
char num_str[256], name_str[256], rxfreq_str[256], offset_str[256];
char power_str[256], scanlist_str[256];
char tot_str[256], rxonly_str[256], admit_str[256], colorcode_str[256];
char slot_str[256], grouplist_str[256], contact_str[256];
int num, power, scanlist, rxonly, admit;
int colorcode, timeslot, grouplist, contact;
double rx_mhz, tx_mhz;
if (sscanf(line, "%s %s %s %s %s %s %s %s %s %s %s %s %s",
num_str, name_str, rxfreq_str, offset_str,
power_str, scanlist_str,
tot_str, rxonly_str, admit_str, colorcode_str,
slot_str, grouplist_str, contact_str) != 13)
return 0;
num = atoi(num_str);
if (num < 1 || num > NCHAN) {
fprintf(stderr, "Bad channel number.\n");
return 0;
}
if (sscanf(rxfreq_str, "%lf", &rx_mhz) != 1 ||
!is_valid_frequency(rx_mhz)) {
fprintf(stderr, "Bad receive frequency.\n");
return 0;
}
if (sscanf(offset_str, "%lf", &tx_mhz) != 1) {
badtx: fprintf(stderr, "Bad transmit frequency.\n");
return 0;
}
if (offset_str[0] == '-' || offset_str[0] == '+')
tx_mhz += rx_mhz;
if (! is_valid_frequency(tx_mhz))
goto badtx;
if (strcasecmp("High", power_str) == 0) {
power = POWER_HIGH;
} else if (strcasecmp("Low", power_str) == 0) {
power = POWER_LOW;
} else if (strcasecmp("Mid", power_str) == 0) {
power = POWER_MIDDLE;
} else if (strcasecmp("Turbo", power_str) == 0) {
power = POWER_TURBO;
} else {
fprintf(stderr, "Bad power level.\n");
return 0;
}
if (*scanlist_str == '-') {
scanlist = 0;
} else {
scanlist = atoi(scanlist_str);
if (scanlist == 0 || scanlist > NSCANL) {
fprintf(stderr, "Bad scanlist.\n");
return 0;
}
}
// Ignore TOT.
if (*rxonly_str == '-') {
rxonly = 0;
} else if (*rxonly_str == '+') {
rxonly = 1;
} else {
fprintf(stderr, "Bad receive only flag.\n");
return 0;
}
if (*admit_str == '-' || strcasecmp("Always", admit_str) == 0) {
admit = PERMIT_ALWAYS;
} else if (strcasecmp("Free", admit_str) == 0) {
admit = PERMIT_CH_FREE;
} else if (strcasecmp("Color", admit_str) == 0) {
admit = PERMIT_CC_SAME;
} else if (strcasecmp("NColor", admit_str) == 0) {
admit = PERMIT_CC_DIFF;
} else {
fprintf(stderr, "Bad admit criteria.\n");
return 0;
}
colorcode = atoi(colorcode_str);
if (colorcode < 0 || colorcode > 15) {
fprintf(stderr, "Bad color code.\n");
return 0;
}
timeslot = atoi(slot_str);
if (timeslot < 1 || timeslot > 2) {
fprintf(stderr, "Bad timeslot.\n");
return 0;
}
if (*grouplist_str == '-') {
grouplist = 0;
} else {
grouplist = atoi(grouplist_str);
if (grouplist == 0 || grouplist > NGLISTS) {
fprintf(stderr, "Bad receive grouplist.\n");
return 0;
}
}
if (*contact_str == '-') {
contact = 0;
} else {
contact = atoi(contact_str);
if (contact == 0 || contact > NCONTACTS) {
fprintf(stderr, "Bad transmit contact.\n");
return 0;
}
}
if (first_row && radio->channel_count == 0) {
// On first entry, erase all channels, zones and scanlists.
erase_channels();
erase_zones();
erase_scanlists();
}
setup_channel(radio, num-1, MODE_DIGITAL, name_str, rx_mhz, tx_mhz,
power, scanlist, rxonly, admit, colorcode, timeslot,
grouplist, contact, 0, 0, BW_12_5_KHZ);
radio->channel_count++;
return 1;
}
//
// Convert tone string to positive for DCS and negative for CTCSS.
// On error, return -1.
// Four possible formats:
// nnn.n - CTCSS frequency
// DnnnN - DCS normal
// DnnnI - DCS inverted
// '-' - Disabled
//
static int encode_ctcss_dcs(char *str)
{
int val;
if (*str == '-') {
// Disabled
return 0;
} else if (*str == 'D' || *str == 'd') {
//
// DCS tone
//
char *e;
val = strtoul(++str, &e, 8);
if (val < 0 || val > 511) {
return -1;
}
if (*e == 'N' || *e == 'n') {
val += 1;
} else if (*e == 'I' || *e == 'i') {
val += 513;
} else {
return -1;
}
} else if (*str >= '0' && *str <= '9') {
//
// CTCSS tone
//
float hz;
if (sscanf(str, "%f", &hz) != 1)
return -1;
// Round to integer.
val = hz * 10.0 + 0.5;
val = -val;
} else {
return -1;
}
return val;
}
//
// Parse one line of Analog channel table.
// Start_flag is 1 for the first table row.
// Return 0 on failure.
//
static int parse_analog_channel(radio_device_t *radio, int first_row, char *line)
{
char num_str[256], name_str[256], rxfreq_str[256], offset_str[256];
char power_str[256], scanlist_str[256], squelch_str[256];
char tot_str[256], rxonly_str[256], admit_str[256];
char rxtone_str[256], txtone_str[256], width_str[256];
int num, power, scanlist, rxonly, admit;
int rxtone, txtone, width;
double rx_mhz, tx_mhz;
if (sscanf(line, "%s %s %s %s %s %s %s %s %s %s %s %s %s",
num_str, name_str, rxfreq_str, offset_str,
power_str, scanlist_str,
tot_str, rxonly_str, admit_str, squelch_str,
rxtone_str, txtone_str, width_str) != 13)
return 0;
num = atoi(num_str);
if (num < 1 || num > NCHAN) {
fprintf(stderr, "Bad channel number.\n");
return 0;
}
if (sscanf(rxfreq_str, "%lf", &rx_mhz) != 1 ||
!is_valid_frequency(rx_mhz)) {
fprintf(stderr, "Bad receive frequency.\n");
return 0;
}
if (sscanf(offset_str, "%lf", &tx_mhz) != 1) {
badtx: fprintf(stderr, "Bad transmit frequency.\n");
return 0;
}
if (offset_str[0] == '-' || offset_str[0] == '+')
tx_mhz += rx_mhz;
if (! is_valid_frequency(tx_mhz))
goto badtx;
if (strcasecmp("High", power_str) == 0) {
power = POWER_HIGH;
} else if (strcasecmp("Low", power_str) == 0) {
power = POWER_LOW;
} else if (strcasecmp("Mid", power_str) == 0) {
power = POWER_MIDDLE;
} else if (strcasecmp("Turbo", power_str) == 0) {
power = POWER_TURBO;
} else {
fprintf(stderr, "Bad power level.\n");
return 0;
}
if (*scanlist_str == '-') {
scanlist = 0;
} else {
scanlist = atoi(scanlist_str);
if (scanlist == 0 || scanlist > NSCANL) {
fprintf(stderr, "Bad scanlist.\n");
return 0;
}
}
// Ignore TOT.
if (*rxonly_str == '-') {
rxonly = 0;
} else if (*rxonly_str == '+') {
rxonly = 1;
} else {
fprintf(stderr, "Bad receive only flag.\n");
return 0;
}
if (*admit_str == '-' || strcasecmp("Always", admit_str) == 0) {
admit = PERMIT_ALWAYS;
} else if (strcasecmp("Free", admit_str) == 0) { // Busy Lock = Repeater
admit = PERMIT_CH_FREE;
} else if (strcasecmp("Tone", admit_str) == 0) { // Busy Lock = Busy
admit = PERMIT_CC_SAME;
} else {
fprintf(stderr, "Bad admit criteria.\n");
return 0;
}
// Ignore squelch.
rxtone = encode_ctcss_dcs(rxtone_str);
if (rxtone == -1) {
fprintf(stderr, "Bad receive tone.\n");
return 0;
}
txtone = encode_ctcss_dcs(txtone_str);
if (txtone == -1) {
fprintf(stderr, "Bad transmit tone.\n");
return 0;
}
if (strcasecmp ("12.5", width_str) == 0) {
width = BW_12_5_KHZ;
} else if (strcasecmp ("25", width_str) == 0) {
width = BW_25_KHZ;
} else {
fprintf (stderr, "Bad width.\n");
return 0;
}
if (first_row && radio->channel_count == 0) {
// On first entry, erase all channels, zones and scanlists.
erase_channels();
}
setup_channel(radio, num-1, MODE_ANALOG, name_str, rx_mhz, tx_mhz,
power, scanlist, rxonly, admit, 0, 1,
0, 0, rxtone, txtone, width);
radio->channel_count++;
return 1;
}
//
// Set name for a given zone.
//
static void setup_zone(int index, const char *name)
{
uint8_t *zmap = GET_ZONEMAP();
zmap[index / 8] |= 1 << (index & 7);
ascii_decode(GET_ZONENAME(index), name, 16, 0);
}
//
// Add channel to a zone.
// Return 0 on failure.
//
static int zone_append(int index, int cnum)
{
uint16_t *zlist = GET_ZONELIST(index);
uint16_t *zchan_a = GET_ZONE_CHAN_A(index);
uint16_t *zchan_b = GET_ZONE_CHAN_B(index);
int i;
for (i=0; i<250; i++) {
if (zlist[i] == cnum)
return 1;
if (zlist[i] == 0xffff) {
zlist[i] = cnum;
if (i == 0) {
// Set A and B channels.
zchan_a[index] = cnum;
zchan_b[index] = cnum;
} else if (i == 1) {
// Set B channel.
zchan_b[index] = cnum;
}
return 1;
}
}
return 0;
}
//
// Parse one line of Zones table.
// Return 0 on failure.
//
static int parse_zones(int first_row, char *line)
{
char num_str[256], name_str[256], chan_str[256];
int znum;
if (sscanf(line, "%s %s %s", num_str, name_str, chan_str) != 3)
return 0;
znum = strtoul(num_str, 0, 10);
if (znum < 1 || znum > NZONES) {
fprintf(stderr, "Bad zone number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Zones table.
erase_zones();
}
setup_zone(znum-1, name_str);
if (*chan_str != '-') {
char *str = chan_str;
int nchan = 0;
int range = 0;
int last = 0;
// Parse channel list.
for (;;) {
char *eptr;
int cnum = strtoul(str, &eptr, 10);
if (eptr == str) {
fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", znum, str);
return 0;
}
if (cnum < 1 || cnum > NCHAN) {
fprintf(stderr, "Zone %d: wrong channel number %d.\n", znum, cnum);
return 0;
}
if (range) {
// Add range.
int c;
for (c=last+1; c<=cnum; c++) {
if (!zone_append(znum-1, c-1)) {
fprintf(stderr, "Zone %d: too many channels.\n", znum);
return 0;
}
nchan++;
}
} else {
// Add single channel.
if (!zone_append(znum-1, cnum-1)) {
fprintf(stderr, "Zone %d: too many channels.\n", znum);
return 0;
}
nchan++;
}
if (*eptr == 0)
break;
if (*eptr != ',' && *eptr != '-') {
fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", znum, eptr);
return 0;
}
range = (*eptr == '-');
last = cnum;
str = eptr + 1;
}
}
return 1;
}
//
// Set parameters for a given scan list.
//
static void setup_scanlist(int index, const char *name,
int prio1, int prio2, int txchan)
{
scanlist_t *sl = GET_SCANLIST(index);
uint8_t *slmap = GET_SCANL_MAP();
slmap[index / 8] |= 1 << (index & 7);
memset(sl, 0, 192);
memset(sl->member, 0xff, 100);
ascii_decode(sl->name, name, 16, 0);
sl->priority_ch1 = prio1; // Priority Channel 1: 0=Current Channel, 0xffff=Off
sl->priority_ch2 = prio2; // Priority Channel 2: 0=Current Channel, 0xffff=Off
sl->revert_channel = txchan; // Revert Channel: Selected or Last Called
if (prio2 != 0xffff) { // Priority Channel Select
if (prio1 != 0xffff) {
sl->prio_ch_select = PRIO_CHAN_SEL12;
} else {
sl->prio_ch_select = PRIO_CHAN_SEL2;
}
} else {
if (prio1 != 0xffff) {
sl->prio_ch_select = PRIO_CHAN_SEL1;
} else {
sl->prio_ch_select = PRIO_CHAN_OFF;
}
}
sl->look_back_a = 20; // Look Back Time A: 2.0s
sl->look_back_b = 30; // Look Back Time B: 3.0s
sl->dropout_delay = 31; // Dropout Delay Time: 3.1s
sl->dwell = 31; // Dwell Time: 3.1s
}
//
// Add channel to a zone.
// Return 0 on failure.
//
static int scanlist_append(int index, int cnum)
{
scanlist_t *sl = GET_SCANLIST(index);
int i;
for (i=0; i<50; i++) {
if (sl->member[i] == cnum-1)
return 1;
if (sl->member[i] == 0xffff) {
sl->member[i] = cnum-1;
return 1;
}
}
return 0;
}
//
// Parse one line of Scanlist table.
// Return 0 on failure.
//
static int parse_scanlist(int first_row, char *line)
{
char num_str[256], name_str[256], prio1_str[256], prio2_str[256];
char tx_str[256], chan_str[256];
int snum, prio1, prio2, txchan;
if (sscanf(line, "%s %s %s %s %s %s",
num_str, name_str, prio1_str, prio2_str, tx_str, chan_str) != 6)
return 0;
snum = atoi(num_str);
if (snum < 1 || snum > NSCANL) {
fprintf(stderr, "Bad scan list number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Scanlists table.
erase_scanlists();
}
if (*prio1_str == '-') {
prio1 = 0xffff;
} else if (strcasecmp("Sel", prio1_str) == 0) {
prio1 = 0;
} else {
prio1 = atoi(prio1_str);
if (prio1 < 1 || prio1 > NCHAN) {
fprintf(stderr, "Bad priority channel 1.\n");
return 0;
}
}
if (*prio2_str == '-') {
prio2 = 0xffff;
} else if (strcasecmp("Sel", prio2_str) == 0) {
prio2 = 0;
} else {
prio2 = atoi(prio2_str);
if (prio2 < 1 || prio2 > NCHAN) {
fprintf(stderr, "Bad priority channel 2.\n");
return 0;
}
}
if (strcasecmp("Last", tx_str) == 0) {
txchan = REVCH_LAST_CALLED;
} else if (strcasecmp("Sel", tx_str) == 0 || strcasecmp("-", tx_str) == 0) {
txchan = REVCH_SELECTED;
} else {
fprintf(stderr, "Bad transmit channel.\n");
return 0;
}
setup_scanlist(snum-1, name_str, prio1, prio2, txchan);
if (*chan_str != '-') {
char *str = chan_str;
int nchan = 0;
int range = 0;
int last = 0;
// Parse channel list.
for (;;) {
char *eptr;
int cnum = strtoul(str, &eptr, 10);
if (eptr == str) {
fprintf(stderr, "Scan list %d: wrong channel list '%s'.\n", snum, str);
return 0;
}
if (cnum < 1 || cnum > NCHAN) {
fprintf(stderr, "Scan list %d: wrong channel number %d.\n", snum, cnum);
return 0;
}
if (range) {
// Add range.
int c;
for (c=last+1; c<=cnum; c++) {
if (!scanlist_append(snum-1, c)) {
fprintf(stderr, "Scan list %d: too many channels.\n", snum);
return 0;
}
nchan++;
}
} else {
// Add single channel.
if (!scanlist_append(snum-1, cnum)) {
fprintf(stderr, "Scan list %d: too many channels.\n", snum);
return 0;
}
nchan++;
}
if (*eptr == 0)
break;
if (*eptr != ',' && *eptr != '-') {
fprintf(stderr, "Scan list %d: wrong channel list '%s'.\n", snum, eptr);
return 0;
}
range = (*eptr == '-');
last = cnum;
str = eptr + 1;
}
}
return 1;
}
//
// Erase all contacts.
//
static void erase_contacts()
{
memset(&radio_mem[OFFSET_CONTACTS], 0xff, NCONTACTS*100);
memset(GET_CONTACT_LIST(), 0xff, NCONTACTS*4);
memset(GET_CONTACT_MAP(), 0xff, (NCONTACTS + 7) / 8);
}
static void setup_contact(int index, const char *name, int type, int id, int rxalert)
{
// Fill contact record.
contact_t *ct = GET_CONTACT(index);
memset(ct, 0, 100);
ascii_decode(ct->name, name, 16, 0);
ct->id[0] = ((id / 10000000) << 4) | ((id / 1000000) % 10);
ct->id[1] = ((id / 100000 % 10) << 4) | ((id / 10000) % 10);
ct->id[2] = ((id / 1000 % 10) << 4) | ((id / 100) % 10);
ct->id[3] = ((id / 10 % 10) << 4) | (id % 10);
ct->type = type;
ct->call_alert = rxalert;
// Update contact map.
uint8_t *cmap = GET_CONTACT_MAP();
cmap[index / 8] &= ~(1 << (index & 7));
// Append to the contact list.
uint32_t *clist = GET_CONTACT_LIST();
int i;
for (i=0; i<NCONTACTS; i++) {
int item = clist[i];
if (item == index) {
// The channel is already in the list.
break;
}
if (item == 0xffffffff) {
// Append to the end of the list.
clist[i] = index;
break;
}
if (item > index) {
// Insert index there and shift the rest.
clist[i] = index;
index = item;
}
}
}
//
// Parse one line of Contacts table.
// Return 0 on failure.
//
static int parse_contact(int first_row, char *line)
{
char num_str[256], name_str[256], type_str[256], id_str[256], rxalert_str[256];
int cnum, type, id, rxalert;
if (sscanf(line, "%s %s %s %s %s",
num_str, name_str, type_str, id_str, rxalert_str) != 5)
return 0;
cnum = atoi(num_str);
if (cnum < 1 || cnum > NCONTACTS) {
fprintf(stderr, "Bad contact number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Contacts table.
erase_contacts();
}
if (strcasecmp("Group", type_str) == 0) {
type = CALL_GROUP;
} else if (strcasecmp("Private", type_str) == 0) {
type = CALL_PRIVATE;
} else if (strcasecmp("All", type_str) == 0) {
type = CALL_ALL;
} else {
fprintf(stderr, "Bad call type.\n");
return 0;
}
id = atoi(id_str);
if (id < 1 || id > 0xffffff) {
fprintf(stderr, "Bad call ID.\n");
return 0;
}
if (*rxalert_str == '-' || strcasecmp("No", rxalert_str) == 0) {
rxalert = ALERT_NONE;
} else if (*rxalert_str == '+' || strcasecmp("Yes", rxalert_str) == 0) {
rxalert = ALERT_RING;
} else if (strcasecmp("Online", rxalert_str) == 0) {
rxalert = ALERT_ONLINE;
} else {
fprintf(stderr, "Bad receive tone flag.\n");
return 0;
}
setup_contact(cnum-1, name_str, type, id, rxalert);
return 1;
}
static void setup_grouplist(int index, const char *name)
{
grouplist_t *gl = GET_GROUPLIST(index);
ascii_decode(gl->name, name, 35, 0);
memset(gl->unused, 0, sizeof(gl->unused));
}
//
// Add contact to a grouplist.
// Return 0 on failure.
//
static int grouplist_append(int index, int cnum)
{
grouplist_t *gl = GET_GROUPLIST(index);
int i;
for (i=0; i<64; i++) {
if (gl->member[i] == cnum-1)
return 1;
if (gl->member[i] == 0xffffffff) {
gl->member[i] = cnum-1;
return 1;
}
}
return 0;
}
//
// Parse one line of Grouplist table.
// Return 0 on failure.
//
static int parse_grouplist(int first_row, char *line)
{
char num_str[256], name_str[256], list_str[256];
int glnum;
if (sscanf(line, "%s %s %s", num_str, name_str, list_str) != 3)
return 0;
glnum = strtoul(num_str, 0, 10);
if (glnum < 1 || glnum > NGLISTS) {
fprintf(stderr, "Bad group list number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Grouplists table.
memset(&radio_mem[OFFSET_GLISTS], 0xff, NGLISTS*320);
}
setup_grouplist(glnum-1, name_str);
if (*list_str != '-') {
char *str = list_str;
int range = 0;
int last = 0;
// Parse contact list.
for (;;) {
char *eptr;
int cnum = strtoul(str, &eptr, 10);
if (eptr == str) {
fprintf(stderr, "Group list %d: wrong contact list '%s'.\n", glnum, str);
return 0;
}
if (cnum < 1 || cnum > NCONTACTS) {
fprintf(stderr, "Group list %d: wrong contact number %d.\n", glnum, cnum);
return 0;
}
if (range) {
// Add range.
int c;
for (c=last+1; c<=cnum; c++) {
if (!grouplist_append(glnum-1, c)) {
fprintf(stderr, "Group list %d: too many contacts.\n", glnum);
return 0;
}
}
} else {
// Add single contact.
if (!grouplist_append(glnum-1, cnum)) {
fprintf(stderr, "Group list %d: too many contacts.\n", glnum);
return 0;
}
}
if (*eptr == 0)
break;
if (*eptr != ',' && *eptr != '-') {
fprintf(stderr, "Group list %d: wrong contact list '%s'.\n", glnum, eptr);
return 0;
}
range = (*eptr == '-');
last = cnum;
str = eptr + 1;
}
}
return 1;
}
//
// Set text for a given message.
//
static void setup_message(int index, const char *text)
{
uint8_t *msg = GET_MESSAGE(index);
// Skip spaces and tabs.
while (*text == ' ' || *text == '\t')
text++;
ascii_decode(msg, text, 200, 0);
}
//
// Parse one line of Messages table.
// Return 0 on failure.
//
static int parse_messages(int first_row, char *line)
{
char *text;
int mnum;
mnum = strtoul(line, &text, 10);
if (text == line || mnum < 1 || mnum > NMESSAGES) {
fprintf(stderr, "Bad message number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Messages table.
memset(&radio_mem[OFFSET_MESSAGES], 0xff, NMESSAGES*256);
}
setup_message(mnum-1, text);
return 1;
}
//
// Parse table header.
// Return table id, or 0 in case of error.
//
static int d868uv_parse_header(radio_device_t *radio, char *line)
{
if (strncasecmp(line, "Digital", 7) == 0)
return 'D';
if (strncasecmp(line, "Analog", 6) == 0)
return 'A';
if (strncasecmp(line, "Zone", 4) == 0)
return 'Z';
if (strncasecmp(line, "Scanlist", 8) == 0)
return 'S';
if (strncasecmp(line, "Contact", 7) == 0)
return 'C';
if (strncasecmp(line, "Grouplist", 9) == 0)
return 'G';
if (strncasecmp(line, "Message", 7) == 0)
return 'M';
return 0;
}
//
// Parse one line of table data.
// Return 0 on failure.
//
static int d868uv_parse_row(radio_device_t *radio, int table_id, int first_row, char *line)
{
switch (table_id) {
case 'D': return parse_digital_channel(radio, first_row, line);
case 'A': return parse_analog_channel(radio, first_row, line);
case 'Z': return parse_zones(first_row, line);
case 'S': return parse_scanlist(first_row, line);
case 'C': return parse_contact(first_row, line);
case 'G': return parse_grouplist(first_row, line);
case 'M': return parse_messages(first_row, line);
}
return 0;
}
//
// Update timestamp.
//
static void d868uv_update_timestamp(radio_device_t *radio)
{
// No timestamp.
}
//
// Check that configuration is correct.
// Return 0 on error.
//
static int d868uv_verify_config(radio_device_t *radio)
{
int i, k, nchannels = 0, nzones = 0, nscanlists = 0, ngrouplists = 0;
int ncontacts = 0, nerrors = 0;
// Channels: check references to scanlists, contacts and grouplists.
for (i=0; i<NCHAN; i++) {
channel_t *ch = get_channel(i);
if (!ch)
continue;
nchannels++;
int scanlist_index = get_scanlist_index(radio, ch);
if (scanlist_index != 0xff) {
scanlist_t *sl = get_scanlist(scanlist_index);
if (!sl) {
fprintf(stderr, "Channel %d '", i+1);
print_ascii(stderr, ch->name, 16, 0);
fprintf(stderr, "': scanlist %d not found.\n", scanlist_index + 1);
nerrors++;
}
}
if (ch->contact_index != 0xffff) {
contact_t *ct = get_contact(ch->contact_index);
if (!ct) {
fprintf(stderr, "Channel %d '", i+1);
print_ascii(stderr, ch->name, 16, 0);
fprintf(stderr, "': contact %d not found.\n", ch->contact_index + 1);
nerrors++;
}
}
if (ch->group_list_index != 0xff) {
grouplist_t *gl = GET_GROUPLIST(ch->group_list_index);
if (!VALID_GROUPLIST(gl)) {
fprintf(stderr, "Channel %d '", i+1);
print_ascii(stderr, ch->name, 16, 0);
fprintf(stderr, "': grouplist %d not found.\n", ch->group_list_index + 1);
nerrors++;
}
}
}
// Zones: check references to channels.
for (i=0; i<NZONES; i++) {
uint8_t *zname;
uint16_t *zlist;
if (!get_zone(i, &zname, &zlist))
continue;
nzones++;
for (k=0; k<250; k++) {
int cnum = zlist[k] + 1;
if (cnum != 0xffff) {
channel_t *ch = get_channel(cnum - 1);
if (!ch) {
fprintf(stderr, "Zone %da '", i+1);
print_ascii(stderr, zname, 16, 0);
fprintf(stderr, "': channel %d not found.\n", cnum);
nerrors++;
}
}
}
}
// Scanlists: check references to channels.
for (i=0; i<NSCANL; i++) {
scanlist_t *sl = get_scanlist(i);
if (!sl)
continue;
nscanlists++;
for (k=0; k<50; k++) {
int cindex = sl->member[k];
if (cindex != 0xffff) {
channel_t *ch = get_channel(cindex);
if (!ch) {
fprintf(stderr, "Scanlist %d '", i+1);
print_ascii(stderr, sl->name, 16, 0);
fprintf(stderr, "': channel %d not found.\n", cindex+1);
nerrors++;
}
}
}
}
// Grouplists: check references to contacts.
for (i=0; i<NGLISTS; i++) {
grouplist_t *gl = GET_GROUPLIST(i);
if (!VALID_GROUPLIST(gl))
continue;
ngrouplists++;
for (k=0; k<64; k++) {
int cnum = gl->member[k];
if (cnum != 0xffffffff) {
contact_t *ct = get_contact(cnum);
if (!ct) {
fprintf(stderr, "Grouplist %d '", i+1);
print_ascii(stderr, gl->name, 35, 0);
fprintf(stderr, "': contact %d not found.\n", cnum);
nerrors++;
}
}
}
}
// Count contacts.
for (i=0; i<NCONTACTS; i++) {
contact_t *ct = get_contact(i);
if (ct)
ncontacts++;
}
if (nerrors > 0) {
fprintf(stderr, "Total %d errors.\n", nerrors);
return 0;
}
fprintf(stderr, "Total %d channels, %d zones, %d scanlists, %d contacts, %d grouplists.\n",
nchannels, nzones, nscanlists, ncontacts, ngrouplists);
return 1;
}
//
// Write CSV file to the callsign database.
//
// The callsign database consists of three parts:
// (1) Map of DMR IDs to data offsets: 8 bytes per record.
// 04000000: 02-60-04-02-00-00-00-00-04-60-04-02-35-00-00-00 .`.......`..5...
// 04000010: 06-60-04-02-70-00-00-00-08-60-04-02-a7-00-00-00 .`..p....`......
// ^^^^^^^^^^^ ^^^^^^^^^^^
// radio id<<1 offset
//
// (2) Sizes: count of records and last data address.
// 044c0000: bf-b7-01-00-bd-f6-34-05-00-00-00-00-00-00-00-00 ......4.........
// ^^^^^^^^^^^ ^^^^^^^^^^^
// count last address
//
// (3) Data records: radio id, name, city, callsign, state, country, remarks.
// 04500000: 00-01-02-30-01-00-57-61-79-6e-65-20-45-64-77-61 ...0..Wayne Edwa
// 04500010: 72-64-00-54-6f-72-6f-6e-74-6f-00-56-45-33-54-48 rd.Toronto.VE3TH
// 04500020: 57-00-4f-6e-74-61-72-69-6f-00-43-61-6e-61-64-61 W.Ontario.Canada
// 04500030: 00-44-4d-52-00- .DMR.
//
static void d868uv_write_csv(radio_device_t *radio, FILE *csv)
{
//TODO
#if 0
uint8_t *mem;
char line[256], *callsign, *name;
int id, bno, nbytes, nrecords = 0;
unsigned finish;
callsign_t *cs;
// Allocate memory.
nbytes = CALLSIGN_FINISH - CALLSIGN_START;
mem = malloc(nbytes);
if (!mem) {
fprintf(stderr, "Out of memory!\n");
return;
}
memset(mem, 0xff, nbytes);
// Parse CSV file.
while (fgets(line, sizeof(line), csv)) {
if (line[0] < '0' || line[0] > '9') {
// Skip header.
continue;
}
// Strip trailing spaces and newline.
char *e = line + strlen(line) - 1;
while (e >= line && (*e=='\n' || *e=='\r' || *e==' ' || *e=='\t'))
*e-- = 0;
id = strtoul(line, 0, 10);
if (id < 1 || id > 0xffffff) {
fprintf(stderr, "Bad id: %d\n", id);
fprintf(stderr, "Line: '%s'\n", line);
return;
}
callsign = strchr(line, ',');
if (! callsign) {
fprintf(stderr, "Cannot find callsign!\n");
fprintf(stderr, "Line: '%s'\n", line);
return;
}
*callsign++ = 0;
name = strchr(callsign, ',');
if (! name) {
fprintf(stderr, "Cannot find name!\n");
fprintf(stderr, "Line: '%s,%s'\n", line, callsign);
return;
}
*name++ = 0;
//printf("%-10d%-10s%s\n", id, callsign, name);
cs = GET_CALLSIGN(mem, nrecords);
nrecords++;
// Fill callsign structure.
cs->dmrid = id;
strncpy(cs->callsign, callsign, sizeof(cs->callsign));
strncpy(cs->name, name, sizeof(cs->name));
}
fprintf(stderr, "Total %d contacts.\n", nrecords);
build_callsign_index(mem, nrecords);
//print_hex(mem, 0x4003);
//exit(0);
// Align to 1kbyte.
finish = CALLSIGN_START + (CALLSIGN_OFFSET + nrecords*120 + 1023) / 1024 * 1024;
if (finish > CALLSIGN_FINISH) {
// Limit is 122197 contacts.
fprintf(stderr, "Too many contacts!\n");
return;
}
// Write callsigns.
radio_progress = 0;
for (bno = CALLSIGN_START/1024; bno < finish/1024; bno++) {
dfu_write_block(bno, &mem[bno*1024 - CALLSIGN_START], 1024);
++radio_progress;
if (radio_progress % 512 == 0) {
fprintf(stderr, "#");
fflush(stderr);
}
}
if (! trace_flag)
fprintf(stderr, "# done.\n");
free(mem);
#endif
}
//
// Anytone AT-D868UV
//
radio_device_t radio_d868uv = {
"Anytone AT-D868UV",
d868uv_download,
d868uv_upload,
d868uv_is_compatible,
d868uv_read_image,
d868uv_save_image,
d868uv_print_version,
d868uv_print_config,
d868uv_verify_config,
d868uv_parse_parameter,
d868uv_parse_header,
d868uv_parse_row,
d868uv_update_timestamp,
d868uv_write_csv,
};
//
// BTECH DMR-6x2
//
radio_device_t radio_dmr6x2 = {
"BTECH DMR-6x2",
d868uv_download,
d868uv_upload,
d868uv_is_compatible,
d868uv_read_image,
d868uv_save_image,
d868uv_print_version,
d868uv_print_config,
d868uv_verify_config,
d868uv_parse_parameter,
d868uv_parse_header,
d868uv_parse_row,
d868uv_update_timestamp,
d868uv_write_csv,
};