52 lines
1.3 KiB
Plaintext
52 lines
1.3 KiB
Plaintext
|
$( demo0.mm 1-Jan-04 $)
|
||
|
|
||
|
$(
|
||
|
~~ PUBLIC DOMAIN ~~
|
||
|
This work is waived of all rights, including copyright, according to the CC0
|
||
|
Public Domain Dedication. http://creativecommons.org/publicdomain/zero/1.0/
|
||
|
|
||
|
Norman Megill - email: nm at alum.mit.edu
|
||
|
|
||
|
$)
|
||
|
|
||
|
|
||
|
$( This file is the introductory formal system example described
|
||
|
in Chapter 2 of the Meamath book. $)
|
||
|
|
||
|
$( Declare the constant symbols we will use $)
|
||
|
$c 0 + = -> ( ) term wff |- $.
|
||
|
$( Declare the metavariables we will use $)
|
||
|
$v t r s P Q $.
|
||
|
$( Specify properties of the metavariables $)
|
||
|
tt $f term t $.
|
||
|
tr $f term r $.
|
||
|
ts $f term s $.
|
||
|
wp $f wff P $.
|
||
|
wq $f wff Q $.
|
||
|
$( Define "term" (part 1) $)
|
||
|
tze $a term 0 $.
|
||
|
$( Define "term" (part 2) $)
|
||
|
tpl $a term ( t + r ) $.
|
||
|
$( Define "wff" (part 1) $)
|
||
|
weq $a wff t = r $.
|
||
|
$( Define "wff" (part 2) $)
|
||
|
wim $a wff ( P -> Q ) $.
|
||
|
$( State axiom a1 $)
|
||
|
a1 $a |- ( t = r -> ( t = s -> r = s ) ) $.
|
||
|
$( State axiom a2 $)
|
||
|
a2 $a |- ( t + 0 ) = t $.
|
||
|
${
|
||
|
min $e |- P $.
|
||
|
maj $e |- ( P -> Q ) $.
|
||
|
$( Define the modus ponens inference rule $)
|
||
|
mp $a |- Q $.
|
||
|
$}
|
||
|
$( Prove a theorem $)
|
||
|
th1 $p |- t = t $=
|
||
|
$( Here is its proof: $)
|
||
|
tt tze tpl tt weq tt tt weq tt a2 tt tze tpl
|
||
|
tt weq tt tze tpl tt weq tt tt weq wim tt a2
|
||
|
tt tze tpl tt tt a1 mp mp
|
||
|
$.
|
||
|
|