2250 lines
85 KiB
XML
2250 lines
85 KiB
XML
$( hol.mm 7-Oct-2014 $)
|
|
|
|
$(
|
|
~~ PUBLIC DOMAIN ~~
|
|
This work is waived of all rights, including copyright, according to the CC0
|
|
Public Domain Dedication. http://creativecommons.org/publicdomain/zero/1.0/
|
|
|
|
Mario Carneiro - email: di.gama at gmail.com
|
|
|
|
$)
|
|
|
|
$(
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
Foundations
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
$)
|
|
|
|
$( Declare the primitive constant symbols for lambda calculus. $)
|
|
$c var $. $( Typecode for variables (syntax) $)
|
|
$c type $. $( Typecode for types (syntax) $)
|
|
$c term $. $( Typecode for terms (syntax) $)
|
|
$c |- $. $( Typecode for theorems (logical) $)
|
|
$c : $. $( Typehood indicator $)
|
|
$c . $. $( Separator $)
|
|
$c |= $. $( Context separator $)
|
|
$c bool $. $( Boolean type $)
|
|
$c ind $. $( 'Individual' type $)
|
|
$c -> $. $( Function type $)
|
|
$c ( $. $( Open parenthesis $)
|
|
$c ) $. $( Close parenthesis $)
|
|
$c , $. $( Context comma $)
|
|
$c \ $. $( Lambda expression $)
|
|
$c = $. $( Equality term $)
|
|
$c T. $. $( Truth term $)
|
|
$c [ $. $( Infix operator $)
|
|
$c ] $. $( Infix operator $)
|
|
|
|
$v al $. $( Greek alpha $)
|
|
$v be $. $( Greek beta $)
|
|
$v ga $. $( Greek gamma $)
|
|
$v de $. $( Greek delta $)
|
|
|
|
$v x y z f g p q $. $( Bound variables $)
|
|
$v A B C F R S T $. $( Term variables $)
|
|
|
|
$( Let variable ` al ` be a type. $)
|
|
hal $f type al $.
|
|
$( Let variable ` be ` be a type. $)
|
|
hbe $f type be $.
|
|
$( Let variable ` ga ` be a type. $)
|
|
hga $f type ga $.
|
|
$( Let variable ` de ` be a type. $)
|
|
hde $f type de $.
|
|
|
|
$( Let variable ` x ` be a var. $)
|
|
vx $f var x $.
|
|
$( Let variable ` y ` be a var. $)
|
|
vy $f var y $.
|
|
$( Let variable ` z ` be a var. $)
|
|
vz $f var z $.
|
|
$( Let variable ` f ` be a var. $)
|
|
vf $f var f $.
|
|
$( Let variable ` g ` be a var. $)
|
|
vg $f var g $.
|
|
$( Let variable ` p ` be a var. $)
|
|
vp $f var p $.
|
|
$( Let variable ` q ` be a var. $)
|
|
vq $f var q $.
|
|
|
|
$( Let variable ` A ` be a term. $)
|
|
ta $f term A $.
|
|
$( Let variable ` B ` be a term. $)
|
|
tb $f term B $.
|
|
$( Let variable ` C ` be a term. $)
|
|
tc $f term C $.
|
|
$( Let variable ` F ` be a term. $)
|
|
tf $f term F $.
|
|
$( Let variable ` R ` be a term. $)
|
|
tr $f term R $.
|
|
$( Let variable ` S ` be a term. $)
|
|
ts $f term S $.
|
|
$( Let variable ` T ` be a term. $)
|
|
tt $f term T $.
|
|
|
|
$( A var is a term. $)
|
|
tv $a term x : al $.
|
|
|
|
$( The type of all functions from type ` al ` to type ` be ` . $)
|
|
ht $a type ( al -> be ) $.
|
|
$( The type of booleans (true and false). $)
|
|
hb $a type bool $.
|
|
$( The type of individuals. $)
|
|
hi $a type ind $.
|
|
|
|
$( A combination (function application). $)
|
|
kc $a term ( F T ) $.
|
|
$( A lambda abstraction. $)
|
|
kl $a term \ x : al . T $.
|
|
$( The equality term. $)
|
|
ke $a term = $.
|
|
$( Truth term. $)
|
|
kt $a term T. $.
|
|
$( Infix operator. $)
|
|
kbr $a term [ A F B ] $.
|
|
$( Context operator. $)
|
|
kct $a term ( A , B ) $.
|
|
|
|
$c wff $. $( Not used; for mmj2 compatibility $)
|
|
|
|
$( Internal axiom for mmj2 use. $)
|
|
wffMMJ2 $a wff A |= B $.
|
|
|
|
$( Internal axiom for mmj2 use. $)
|
|
wffMMJ2t $a wff A : al $.
|
|
|
|
${
|
|
idi.1 $e |- R |= A $.
|
|
$( The identity inference. $)
|
|
idi $p |- R |= A $=
|
|
( ) C $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
idt.1 $e |- A : al $.
|
|
$( The identity inference. $)
|
|
idt $p |- A : al $=
|
|
( ) C $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax-syl.1 $e |- R |= S $.
|
|
ax-syl.2 $e |- S |= T $.
|
|
$( Syllogism inference. $)
|
|
ax-syl $a |- R |= T $.
|
|
|
|
$( Syllogism inference. $)
|
|
syl $p |- R |= T $=
|
|
( ax-syl ) ABCDEF $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax-jca.1 $e |- R |= S $.
|
|
ax-jca.2 $e |- R |= T $.
|
|
$( Join common antecedents. $)
|
|
ax-jca $a |- R |= ( S , T ) $.
|
|
|
|
$( Syllogism inference. $)
|
|
jca $p |- R |= ( S , T ) $=
|
|
( ax-jca ) ABCDEF $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
syl2anc.1 $e |- R |= S $.
|
|
syl2anc.2 $e |- R |= T $.
|
|
syl2anc.3 $e |- ( S , T ) |= A $.
|
|
$( Syllogism inference. $)
|
|
syl2anc $p |- R |= A $=
|
|
( kct jca syl ) BCDHABCDEFIGJ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax-simpl.1 $e |- R : bool $.
|
|
ax-simpl.2 $e |- S : bool $.
|
|
$( Extract an assumption from the context. $)
|
|
ax-simpl $a |- ( R , S ) |= R $.
|
|
|
|
$( Extract an assumption from the context. $)
|
|
ax-simpr $a |- ( R , S ) |= S $.
|
|
|
|
$( Extract an assumption from the context. $)
|
|
simpl $p |- ( R , S ) |= R $=
|
|
( ax-simpl ) ABCDE $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Extract an assumption from the context. $)
|
|
simpr $p |- ( R , S ) |= S $=
|
|
( ax-simpr ) ABCDE $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax-id.1 $e |- R : bool $.
|
|
$( The identity inference. $)
|
|
ax-id $a |- R |= R $.
|
|
|
|
$( The identity inference. $)
|
|
id $p |- R |= R $=
|
|
( ax-id ) ABC $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax-trud.1 $e |- R : bool $.
|
|
$( Deduction form of ~ tru . $)
|
|
ax-trud $a |- R |= T. $.
|
|
|
|
$( Deduction form of ~ tru . $)
|
|
trud $p |- R |= T. $=
|
|
( ax-trud ) ABC $.
|
|
$( [7-Oct-2014] $)
|
|
|
|
ax-a1i.2 $e |- T. |= A $.
|
|
$( Change an empty context into any context. $)
|
|
a1i $p |- R |= A $=
|
|
( kt ax-trud syl ) BEABCFDG $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax-cb.1 $e |- R |= A $.
|
|
$( A context has type boolean.
|
|
|
|
This and the next few axioms are not strictly necessary, and are
|
|
conservative on any theorem for which every variable has a specified
|
|
type, but by adding this axiom we can save some typehood hypotheses in
|
|
many theorems. The easy way to see that this axiom is conservative is
|
|
to note that every axiom and inference rule that constructs a theorem of
|
|
the form ` R |= A ` where ` R ` and ` A ` are type variables, also
|
|
ensures that ` R : bool ` and ` A : bool ` . Thus it is impossible to
|
|
prove any theorem ` |- R |= A ` unless both ` |- R : bool ` and
|
|
` |- A : bool ` had been previously derived, so it is conservative to
|
|
deduce ` |- R : bool ` from ` |- R |= A ` . The same remark applies to
|
|
the construction of the theorem ` ( A , B ) : bool ` - there is only one
|
|
rule that creates a formula of this type, namely ~ wct , and it requires
|
|
that ` A : bool ` and ` B : bool ` be previously established, so it is
|
|
safe to reverse the process in ~ wctl and ~ wctr . $)
|
|
ax-cb1 $a |- R : bool $.
|
|
|
|
$( A theorem has type boolean. (This axiom is unnecessary;
|
|
see ~ ax-cb1 .) $)
|
|
ax-cb2 $a |- A : bool $.
|
|
$}
|
|
|
|
${
|
|
wctl.1 $e |- ( S , T ) : bool $.
|
|
$( Reverse closure for the type of a context. (This axiom is unnecessary;
|
|
see ~ ax-cb1 .) $)
|
|
wctl $a |- S : bool $.
|
|
|
|
$( Reverse closure for the type of a context. (This axiom is unnecessary;
|
|
see ~ ax-cb1 .) $)
|
|
wctr $a |- T : bool $.
|
|
$}
|
|
|
|
${
|
|
mpdan.1 $e |- R |= S $.
|
|
mpdan.2 $e |- ( R , S ) |= T $.
|
|
$( Modus ponens deduction. $)
|
|
mpdan $p |- R |= T $=
|
|
( ax-cb1 id syl2anc ) CAABABADFGDEH $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
syldan.1 $e |- ( R , S ) |= T $.
|
|
syldan.2 $e |- ( R , T ) |= A $.
|
|
$( Syllogism inference. $)
|
|
syldan $p |- ( R , S ) |= A $=
|
|
( kct ax-cb1 wctl wctr simpl syl2anc ) ABCGZBDBCBCDMEHZIBCNJKEFL $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
simpld.1 $e |- R |= ( S , T ) $.
|
|
$( Extract an assumption from the context. $)
|
|
simpld $p |- R |= S $=
|
|
( kct ax-cb2 wctl wctr simpl syl ) ABCEZBDBCBCKADFZGBCLHIJ $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Extract an assumption from the context. $)
|
|
simprd $p |- R |= T $=
|
|
( kct ax-cb2 wctl wctr simpr syl ) ABCEZCDBCBCKADFZGBCLHIJ $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
trul.1 $e |- ( T. , R ) |= S $.
|
|
$( Deduction form of ~ tru . $)
|
|
trul $p |- R |= S $=
|
|
( kt kct ax-cb1 wctr trud id syl2anc ) BADAADABDAECFGZHAKICJ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
$( The equality function has type ` al -> al -> bool ` , i.e. it is
|
|
polymorphic over all types, but the left and right type must agree. $)
|
|
weq $a |- = : ( al -> ( al -> bool ) ) $.
|
|
|
|
${
|
|
ax-refl.1 $e |- A : al $.
|
|
$( Reflexivity of equality. $)
|
|
ax-refl $a |- T. |= ( ( = A ) A ) $.
|
|
$}
|
|
|
|
$( Truth type. $)
|
|
wtru $p |- T. : bool $=
|
|
( ke kc kt hb ht weq ax-refl ax-cb1 ) AABABCDDDEEADFGH $.
|
|
$( [10-Oct-2014] $)
|
|
|
|
$( Tautology is provable. $)
|
|
tru $p |- T. |= T. $=
|
|
( kt wtru id ) ABC $.
|
|
$( [7-Oct-2014] $)
|
|
|
|
${
|
|
ax-eqmp.1 $e |- R |= A $.
|
|
ax-eqmp.2 $e |- R |= ( ( = A ) B ) $.
|
|
$( Modus ponens for equality. $)
|
|
ax-eqmp $a |- R |= B $.
|
|
$}
|
|
|
|
${
|
|
ax-ded.1 $e |- ( R , S ) |= T $.
|
|
ax-ded.2 $e |- ( R , T ) |= S $.
|
|
$( Deduction theorem for equality. $)
|
|
ax-ded $a |- R |= ( ( = S ) T ) $.
|
|
$}
|
|
|
|
${
|
|
wct.1 $e |- S : bool $.
|
|
wct.2 $e |- T : bool $.
|
|
$( The type of a context. $)
|
|
wct $a |- ( S , T ) : bool $.
|
|
$}
|
|
|
|
${
|
|
wc.1 $e |- F : ( al -> be ) $.
|
|
wc.2 $e |- T : al $.
|
|
$( The type of a combination. $)
|
|
wc $a |- ( F T ) : be $.
|
|
$}
|
|
|
|
${
|
|
ax-ceq.1 $e |- F : ( al -> be ) $.
|
|
ax-ceq.2 $e |- T : ( al -> be ) $.
|
|
ax-ceq.3 $e |- A : al $.
|
|
ax-ceq.4 $e |- B : al $.
|
|
$( Equality theorem for combination. $)
|
|
ax-ceq $a |- ( ( ( = F ) T ) , ( ( = A ) B ) ) |=
|
|
( ( = ( F A ) ) ( T B ) ) $.
|
|
$}
|
|
|
|
${
|
|
eqcomx.1 $e |- A : al $.
|
|
eqcomx.2 $e |- B : al $.
|
|
eqcomx.3 $e |- R |= ( ( = A ) B ) $.
|
|
$( Commutativity of equality. $)
|
|
eqcomx $p |- R |= ( ( = B ) A ) $=
|
|
( ke kc ax-cb1 ax-refl a1i hb ht weq ax-ceq syl2anc wc ax-eqmp ) HBIZBIZH
|
|
CIZBIZDUADTCIZDGJZABEKLZHUAIUCIDHTIUBIZUAUGDHHIHIZUDUHDUEAAMNZNHAOZKLGAUI
|
|
BCHHUJUJEFPQUFAMBBTUBAUIHBUJERAUIHCUJFREEPQS $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
mpbirx.1 $e |- B : bool $.
|
|
mpbirx.2 $e |- R |= A $.
|
|
mpbirx.3 $e |- R |= ( ( = B ) A ) $.
|
|
$( Deduction from equality inference. $)
|
|
mpbirx $p |- R |= B $=
|
|
( hb ax-cb2 eqcomx ax-eqmp ) ABCEGBACDACEHFIJ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ancoms.1 $e |- ( R , S ) |= T $.
|
|
$( Swap the two elements of a context. $)
|
|
ancoms $p |- ( S , R ) |= T $=
|
|
( kct ax-cb1 wctr wctl simpr simpl syl2anc ) CBAEABBAABCABEDFZGZABLHZIBAM
|
|
NJDK $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
adantr.1 $e |- R |= T $.
|
|
adantr.2 $e |- S : bool $.
|
|
$( Extract an assumption from the context. $)
|
|
adantr $p |- ( R , S ) |= T $=
|
|
( kct ax-cb1 simpl syl ) ABFACABCADGEHDI $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Extract an assumption from the context. $)
|
|
adantl $p |- ( S , R ) |= T $=
|
|
( adantr ancoms ) ABCABCDEFG $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ct1.1 $e |- R |= S $.
|
|
ct1.2 $e |- T : bool $.
|
|
$( Introduce a right conjunct. $)
|
|
ct1 $p |- ( R , T ) |= ( S , T ) $=
|
|
( kct adantr ax-cb1 simpr jca ) ACFBCACBDEGACBADHEIJ $.
|
|
|
|
$( Introduce a left conjunct. $)
|
|
ct2 $p |- ( T , R ) |= ( T , S ) $=
|
|
( kct ax-cb1 simpl adantl jca ) CAFCBCAEBADGHACBDEIJ $.
|
|
$}
|
|
|
|
${
|
|
sylan.1 $e |- R |= S $.
|
|
sylan.2 $e |- ( S , T ) |= A $.
|
|
$( Syllogism inference. $)
|
|
sylan $p |- ( R , T ) |= A $=
|
|
( kct ax-cb1 wctr adantr simpr syl2anc ) ABDGCDBDCECDACDGFHIZJBDCBEHMKFL
|
|
$.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
an32s.1 $e |- ( ( R , S ) , T ) |= A $.
|
|
$( Commutation identity for context. $)
|
|
an32s $p |- ( ( R , T ) , S ) |= A $=
|
|
( kct ax-cb1 wctl wctr simpl ct1 simpr adantr syl2anc ) ABDFZCFBCFZDOBCBD
|
|
BCPDAPDFEGZHZHZPDQIZJBCRIZKOCDBDSTLUAMEN $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Associativity for context. $)
|
|
anasss $p |- ( R , ( S , T ) ) |= A $=
|
|
( kct ax-cb1 wctl id ancoms sylan an32s ) CDFBAACBDACBFBCFZDBCMMMDAMDFEGH
|
|
IJEKLJ $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
anassrs.1 $e |- ( R , ( S , T ) ) |= A $.
|
|
$( Associativity for context. $)
|
|
anassrs $p |- ( ( R , S ) , T ) |= A $=
|
|
( kct ax-cb1 wctl wctr simpl adantr simpr ct1 syl2anc ) ABCFZDFBCDFZODBBC
|
|
BPABPFEGZHZCDBPQIZHZJCDSIZKOCDBCRTLUAMEN $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
$( The type of a typed variable. $)
|
|
wv $a |- x : al : al $.
|
|
|
|
${
|
|
wl.1 $e |- T : be $.
|
|
$( The type of a lambda abstraction. $)
|
|
wl $a |- \ x : al . T : ( al -> be ) $.
|
|
$}
|
|
|
|
${
|
|
ax-beta.1 $e |- A : be $.
|
|
$( Axiom of beta-substitution. $)
|
|
ax-beta $a |- T. |= ( ( = ( \ x : al . A x : al ) ) A ) $.
|
|
|
|
ax-distrc.2 $e |- B : al $.
|
|
ax-distrc.3 $e |- F : ( be -> ga ) $.
|
|
$( Distribution of combination over substitution. $)
|
|
ax-distrc $a |- T. |= ( ( = ( \ x : al . ( F A ) B ) )
|
|
( ( \ x : al . F B ) ( \ x : al . A B ) ) ) $.
|
|
$}
|
|
|
|
${
|
|
$d x R $.
|
|
ax-leq.1 $e |- A : be $.
|
|
ax-leq.2 $e |- B : be $.
|
|
ax-leq.3 $e |- R |= ( ( = A ) B ) $.
|
|
$( Equality theorem for abstraction. $)
|
|
ax-leq $a |- R |= ( ( = \ x : al . A ) \ x : al . B ) $.
|
|
$}
|
|
|
|
${
|
|
$d x y $. $d y B $.
|
|
ax-distrl.1 $e |- A : ga $.
|
|
ax-distrl.2 $e |- B : al $.
|
|
$( Distribution of lambda abstraction over substitution. $)
|
|
ax-distrl $a |- T. |=
|
|
( ( = ( \ x : al . \ y : be . A B ) ) \ y : be . ( \ x : al . A B ) ) $.
|
|
$}
|
|
|
|
${
|
|
wov.1 $e |- F : ( al -> ( be -> ga ) ) $.
|
|
wov.2 $e |- A : al $.
|
|
wov.3 $e |- B : be $.
|
|
$( Type of an infix operator. $)
|
|
wov $a |- [ A F B ] : ga $.
|
|
|
|
$( Infix operator. This is a simple metamath way of cleaning up the syntax
|
|
of all these infix operators to make them a bit more readable than the
|
|
curried representation. $)
|
|
df-ov $a |- T. |= ( ( = [ A F B ] ) ( ( F A ) B ) ) $.
|
|
$}
|
|
|
|
${
|
|
dfov1.1 $e |- F : ( al -> ( be -> bool ) ) $.
|
|
dfov1.2 $e |- A : al $.
|
|
dfov1.3 $e |- B : be $.
|
|
${
|
|
dfov1.4 $e |- R |= [ A F B ] $.
|
|
$( Forward direction of ~ df-ov . $)
|
|
dfov1 $p |- R |= ( ( F A ) B ) $=
|
|
( kbr kc ke ax-cb1 hb df-ov a1i ax-eqmp ) CDEKZECLDLZFJMSLTLFSFJNABOCDE
|
|
GHIPQR $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
dfov2.4 $e |- R |= ( ( F A ) B ) $.
|
|
$( Reverse direction of ~ df-ov . $)
|
|
dfov2 $p |- R |= [ A F B ] $=
|
|
( kc kbr hb wov ke ax-cb1 df-ov a1i mpbirx ) ECKDKZCDELZFABMCDEGHINJOUAKT
|
|
KFTFJPABMCDEGHIQRS $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
weqi.1 $e |- A : al $.
|
|
weqi.2 $e |- B : al $.
|
|
$( Type of an equality. $)
|
|
weqi $p |- [ A = B ] : bool $=
|
|
( hb ke weq wov ) AAFBCGAHDEI $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
eqcomi.1 $e |- A : al $.
|
|
eqcomi.2 $e |- R |= [ A = B ] $.
|
|
$( Deduce equality of types from equality of expressions. (This is
|
|
unnecessary but eliminates a lot of hypotheses.) $)
|
|
eqtypi $a |- B : al $.
|
|
|
|
$( Commutativity of equality. $)
|
|
eqcomi $p |- R |= [ B = A ] $=
|
|
( ke weq eqtypi dfov1 eqcomx dfov2 ) AACBGDAHZABCDEFIZEABCDENAABCGDMENFJK
|
|
L $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
eqtypri.1 $e |- A : al $.
|
|
eqtypri.2 $e |- R |= [ B = A ] $.
|
|
$( Deduce equality of types from equality of expressions. (This is
|
|
unnecessary but eliminates a lot of hypotheses.) $)
|
|
eqtypri $a |- B : al $.
|
|
$}
|
|
|
|
${
|
|
mpbi.1 $e |- R |= A $.
|
|
mpbi.2 $e |- R |= [ A = B ] $.
|
|
$( Deduction from equality inference. $)
|
|
mpbi $p |- R |= B $=
|
|
( hb ke weq ax-cb2 eqtypi dfov1 ax-eqmp ) ABCDFFABGCFHACDIZFABCMEJEKL $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
eqid.1 $e |- R : bool $.
|
|
eqid.2 $e |- A : al $.
|
|
$( Reflexivity of equality. $)
|
|
eqid $p |- R |= [ A = A ] $=
|
|
( ke weq kc ax-refl a1i dfov2 ) AABBFCAGEEFBHBHCDABEIJK $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ded.1 $e |- ( R , S ) |= T $.
|
|
ded.2 $e |- ( R , T ) |= S $.
|
|
$( Deduction theorem for equality. $)
|
|
ded $p |- R |= [ S = T ] $=
|
|
( hb ke weq kct ax-cb2 ax-ded dfov2 ) FFBCGAFHBACIEJCABIDJABCDEKL $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
dedi.1 $e |- S |= T $.
|
|
dedi.2 $e |- T |= S $.
|
|
$( Deduction theorem for equality. $)
|
|
dedi $p |- T. |= [ S = T ] $=
|
|
( kt wtru adantl ded ) EABAEBCFGBEADFGH $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
eqtru.1 $e |- R |= A $.
|
|
$( If a statement is provable, then it is equivalent to truth. $)
|
|
eqtru $p |- R |= [ T. = A ] $=
|
|
( kt wtru adantr kct ax-cb1 ax-cb2 wct tru a1i ded ) BDABDACEFDBAGBAABCHA
|
|
BCIJKLM $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
mpbir.1 $e |- R |= A $.
|
|
mpbir.2 $e |- R |= [ B = A ] $.
|
|
$( Deduction from equality inference. $)
|
|
mpbir $p |- R |= B $=
|
|
( hb ax-cb2 eqtypri eqcomi mpbi ) ABCDFBACFABCACDGEHEIJ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ceq12.1 $e |- F : ( al -> be ) $.
|
|
ceq12.2 $e |- A : al $.
|
|
${
|
|
ceq12.3 $e |- R |= [ F = T ] $.
|
|
${
|
|
ceq12.4 $e |- R |= [ A = B ] $.
|
|
$( Equality theorem for combination. $)
|
|
ceq12 $p |- R |= [ ( F A ) = ( T B ) ] $=
|
|
( kc ke weq wc ht eqtypi dfov1 ax-ceq syl2anc dfov2 ) BBECLZGDLZMFBNA
|
|
BECHIOABGDABPZEGFHJQZACDFIKQZOMUBLUCLFMELGLMCLDLUDUDEGMFUDNHUEJRAACDM
|
|
FANIUFKRABCDEGHUEIUFSTUA $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
$( Equality theorem for combination. $)
|
|
ceq1 $p |- R |= [ ( F A ) = ( T A ) ] $=
|
|
( ke kbr ax-cb1 eqid ceq12 ) ABCCDEFGHIACEDFJKEILHMN $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
ceq2.3 $e |- R |= [ A = B ] $.
|
|
$( Equality theorem for combination. $)
|
|
ceq2 $p |- R |= [ ( F A ) = ( F B ) ] $=
|
|
( ht ke kbr ax-cb1 eqid ceq12 ) ABCDEFEGHABJEFCDKLFIMGNIO $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x R $.
|
|
leq.1 $e |- A : be $.
|
|
leq.2 $e |- R |= [ A = B ] $.
|
|
$( Equality theorem for lambda abstraction. $)
|
|
leq $p |- R |= [ \ x : al . A = \ x : al . B ] $=
|
|
( ht kl ke weq wl eqtypi dfov1 ax-leq dfov2 ) ABIZRACDJACEJKFRLABCDGMABCE
|
|
BDEFGHNZMABCDEFGSBBDEKFBLGSHOPQ $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
beta.1 $e |- A : be $.
|
|
$( Axiom of beta-substitution. $)
|
|
beta $p |- T. |= [ ( \ x : al . A x : al ) = A ] $=
|
|
( kl tv kc ke kt weq wl wv wc ax-beta dfov2 ) BBACDFZACGZHDIJBKABQRABCDEL
|
|
ACMNEABCDEOP $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
distrc.1 $e |- F : ( be -> ga ) $.
|
|
distrc.2 $e |- A : be $.
|
|
distrc.3 $e |- B : al $.
|
|
$( Distribution of combination over substitution. $)
|
|
distrc $p |- T. |= [ ( \ x : al . ( F A ) B ) =
|
|
( ( \ x : al . F B ) ( \ x : al . A B ) ) ] $=
|
|
( kc kl ke kt weq wc wl ht ax-distrc dfov2 ) CCADGEKZLZFKADGLZFKZADELZFKZ
|
|
KMNCOACUBFACDUABCGEHIPQJPBCUDUFABCRZUCFAUGDGHQJPABUEFABDEIQJPPABCDEFGIJHS
|
|
T $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y $. $d y B $.
|
|
distrl.1 $e |- A : ga $.
|
|
distrl.2 $e |- B : al $.
|
|
$( Distribution of lambda abstraction over substitution. $)
|
|
distrl $p |- T. |=
|
|
[ ( \ x : al . \ y : be . A B ) = \ y : be . ( \ x : al . A B ) ] $=
|
|
( ht kl kc ke kt weq wl wc ax-distrl dfov2 ) BCJZTADBEFKZKZGLBEADFKZGLZKM
|
|
NTOATUBGATDUABCEFHPPIQBCEUDACUCGACDFHPIQPABCDEFGHIRS $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
eqtri.1 $e |- A : al $.
|
|
eqtri.2 $e |- R |= [ A = B ] $.
|
|
eqtri.3 $e |- R |= [ B = C ] $.
|
|
$( Transitivity of equality. $)
|
|
eqtri $p |- R |= [ A = C ] $=
|
|
( ke weq eqtypi kc dfov1 hb ht wc ceq2 mpbi dfov2 ) AABDIEAJZFACDEABCEFGK
|
|
ZHKIBLZCLUBDLEAABCIETFUAGMANCDUBEAANOIBTFPUAHQRS $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
3eqtr4i.1 $e |- A : al $.
|
|
3eqtr4i.2 $e |- R |= [ A = B ] $.
|
|
${
|
|
3eqtr4i.3 $e |- R |= [ S = A ] $.
|
|
3eqtr4i.4 $e |- R |= [ T = B ] $.
|
|
$( Transitivity of equality. $)
|
|
3eqtr4i $p |- R |= [ S = T ] $=
|
|
( eqtypri eqtypi eqcomi eqtri ) AEBFDABEDGIKIABCFDGHAFCDACFDABCDGHLJKJMNN
|
|
$.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
3eqtr3i.3 $e |- R |= [ A = S ] $.
|
|
3eqtr3i.4 $e |- R |= [ B = T ] $.
|
|
$( Transitivity of equality. $)
|
|
3eqtr3i $p |- R |= [ S = T ] $=
|
|
( eqcomi eqtypi 3eqtr4i ) ABCDEFGHABEDGIKACFDABCDGHLJKM $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
oveq.1 $e |- F : ( al -> ( be -> ga ) ) $.
|
|
oveq.2 $e |- A : al $.
|
|
oveq.3 $e |- B : be $.
|
|
${
|
|
oveq123.4 $e |- R |= [ F = S ] $.
|
|
oveq123.5 $e |- R |= [ A = C ] $.
|
|
oveq123.6 $e |- R |= [ B = T ] $.
|
|
$( Equality theorem for binary operation. $)
|
|
oveq123 $p |- R |= [ [ A F B ] = [ C S T ] ] $=
|
|
( kc kbr wc ke ht ceq12 weq wov ax-cb1 df-ov a1i dfov2 eqtypi 3eqtr4i )
|
|
CGDQZEQZIFQZJQZHDEGRZFJIRZBCUKEABCUAZGDKLSZMSZBCEJUKHUMURMAUQDFGHIKLNOU
|
|
BPUBCCUOULTHCUCZABCDEGKLMUDUSTUOQULQHGITRHNUEZABCDEGKLMUFUGUHCCUPUNTHUT
|
|
ABCFJIAUQUAGIHKNUIZADFHLOUIZBEJHMPUIZUDBCUMJAUQIFVBVCSVDSTUPQUNQHVAABCF
|
|
JIVBVCVDUFUGUHUJ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
oveq1.4 $e |- R |= [ A = C ] $.
|
|
$( Equality theorem for binary operation. $)
|
|
oveq1 $p |- R |= [ [ A F B ] = [ C F B ] ] $=
|
|
( ht ke kbr ax-cb1 eqid oveq123 ) ABCDEFGHGEIJKABCMMGHDFNOHLPZIQLBEHSKQ
|
|
R $.
|
|
$( [7-Oct-2014] $)
|
|
|
|
oveq12.5 $e |- R |= [ B = T ] $.
|
|
$( Equality theorem for binary operation. $)
|
|
oveq12 $p |- R |= [ [ A F B ] = [ C F T ] ] $=
|
|
( ht ke kbr ax-cb1 eqid oveq123 ) ABCDEFGHGIJKLABCOOGHDFPQHMRJSMNT $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
oveq2.4 $e |- R |= [ B = T ] $.
|
|
$( Equality theorem for binary operation. $)
|
|
oveq2 $p |- R |= [ [ A F B ] = [ A F T ] ] $=
|
|
( ke kbr ax-cb1 eqid oveq12 ) ABCDEDFGHIJKADGEHMNGLOJPLQ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
oveq.4 $e |- R |= [ F = S ] $.
|
|
$( Equality theorem for binary operation. $)
|
|
oveq $p |- R |= [ [ A F B ] = [ A S B ] ] $=
|
|
( ke kbr ax-cb1 eqid oveq123 ) ABCDEDFGHEIJKLADGFHMNGLOZJPBEGRKPQ $.
|
|
$( [7-Oct-2014] $)
|
|
$}
|
|
$}
|
|
|
|
${
|
|
ax-hbl1.1 $e |- A : ga $.
|
|
ax-hbl1.2 $e |- B : al $.
|
|
$( ` x ` is bound in ` \ x A ` . $)
|
|
ax-hbl1 $a |- T. |= [ ( \ x : al . \ x : be . A B ) = \ x : be . A ] $.
|
|
|
|
hbl1.3 $e |- R : bool $.
|
|
$( Inference form of ~ ax-hbl1 . $)
|
|
hbl1 $p |- R |= [ ( \ x : al . \ x : be . A B ) = \ x : be . A ] $=
|
|
( kl kc ke kbr ax-hbl1 a1i ) ADBDEKZKFLQMNGJABCDEFHIOP $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x A $.
|
|
ax-17.1 $e |- A : be $.
|
|
ax-17.2 $e |- B : al $.
|
|
$( If ` x ` does not appear in ` A ` , then any substitution to ` A `
|
|
yields ` A ` again, i.e. ` \ x A ` is a constant function. $)
|
|
ax-17 $a |- T. |= [ ( \ x : al . A B ) = A ] $.
|
|
|
|
a17i.3 $e |- R : bool $.
|
|
$( Inference form of ~ ax-17 . $)
|
|
a17i $p |- R |= [ ( \ x : al . A B ) = A ] $=
|
|
( kl kc ke kbr ax-17 a1i ) ACDJEKDLMFIABCDEGHNO $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x R $.
|
|
hbxfr.1 $e |- T : be $.
|
|
hbxfr.2 $e |- B : al $.
|
|
${
|
|
hbxfrf.3 $e |- R |= [ T = A ] $.
|
|
hbxfrf.4 $e |- ( S , R ) |= [ ( \ x : al . A B ) = A ] $.
|
|
$( Transfer a hypothesis builder to an equivalent expression. $)
|
|
hbxfrf $p |- ( S , R ) |= [ ( \ x : al . T B ) = T ] $=
|
|
( kl kc kct eqtypi wl ke kbr adantl wc leq ceq1 ax-cb1 wctl 3eqtr4i ) B
|
|
ACDMZENZDGFOZACHMZENZHABUGEABCDBHDFIKPQJUALFGUKUHRSABEUJFUGABCHIQJABCHD
|
|
FIKUBUCGFUHDRSUILUDUEZTFGHDRSKULTUF $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
hbxfr.3 $e |- R |= [ T = A ] $.
|
|
hbxfr.4 $e |- R |= [ ( \ x : al . A B ) = A ] $.
|
|
$( Transfer a hypothesis builder to an equivalent expression. $)
|
|
hbxfr $p |- R |= [ ( \ x : al . T B ) = T ] $=
|
|
( kl kc ke kbr ax-cb1 id adantr hbxfrf syl2anc ) ACGLEMGNOFFFFGDNOFJPZQZU
|
|
BABCDEFFGHIJFFACDLEMDNOKUARST $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x R $.
|
|
hbth.1 $e |- B : al $.
|
|
hbth.2 $e |- R |= A $.
|
|
$( Hypothesis builder for a theorem. $)
|
|
hbth $p |- R |= [ ( \ x : al . A B ) = A ] $=
|
|
( hb kt ax-cb2 wtru eqtru eqcomi ax-cb1 a17i hbxfr ) AHBIDECCEGJFHICEKCEG
|
|
LMAHBIDEKFCEGNOP $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
hbc.1 $e |- F : ( be -> ga ) $.
|
|
hbc.2 $e |- A : be $.
|
|
hbc.3 $e |- B : al $.
|
|
hbc.4 $e |- R |= [ ( \ x : al . F B ) = F ] $.
|
|
hbc.5 $e |- R |= [ ( \ x : al . A B ) = A ] $.
|
|
$( Hypothesis builder for combination. $)
|
|
hbc $p |- R |= [ ( \ x : al . ( F A ) B ) = ( F A ) ] $=
|
|
( kc kl wc wl ke kbr ax-cb1 distrc a1i ht eqtypri ceq12 eqtri ) CADGENZOZ
|
|
FNZADGOZFNZADEOFNZNZUGHACUHFACDUGBCGEIJPQKPUIUMRSHUKGRSHLTABCDEFGIJKUAUBB
|
|
CULEUKHGABCUCZUJFAUNDGIQKPBEULHJMUDLMUEUF $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
hbov.1 $e |- F : ( be -> ( ga -> de ) ) $.
|
|
hbov.2 $e |- A : be $.
|
|
hbov.3 $e |- B : al $.
|
|
hbov.4 $e |- C : ga $.
|
|
hbov.5 $e |- R |= [ ( \ x : al . F B ) = F ] $.
|
|
hbov.6 $e |- R |= [ ( \ x : al . A B ) = A ] $.
|
|
hbov.7 $e |- R |= [ ( \ x : al . C B ) = C ] $.
|
|
$( Hypothesis builder for binary operation. $)
|
|
hbov $p |- R |= [ ( \ x : al . [ A F C ] B ) = [ A F C ] ] $=
|
|
( kt kbr kc kl ke ax-cb1 trud wov weq ht wc df-ov dfov2 hbc adantr hbxfrf
|
|
wtru mpdan ) JRAEFHISZUAGTUPUBSJAEIUAGTIUBSJOUCUDADEIFTZHTZGRJUPBCDFHIKLN
|
|
UEZMDDUPURUBRDUFUSCDUQHBCDUGZIFKLUHZNUHBCDFHIKLNUIUJJRAEURUAGTURUBSACDEHG
|
|
UQJVANMABUTEFGIJKLMOPUKQUKUNULUMUO $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y $. $d y B $. $d y R $.
|
|
hbl.1 $e |- A : ga $.
|
|
hbl.2 $e |- B : al $.
|
|
hbl.3 $e |- R |= [ ( \ x : al . A B ) = A ] $.
|
|
$( Hypothesis builder for lambda abstraction. $)
|
|
hbl $p |- R |= [ ( \ x : al . \ y : be . A B ) = \ y : be . A ] $=
|
|
( ht kl kc wl wc ke kbr ax-cb1 distrl a1i leq eqtri ) BCLZADBEFMZMZGNZBEA
|
|
DFMZGNZMZUEHAUDUFGAUDDUEBCEFIOOJPUGUJQRHUIFQRHKSABCDEFGIJTUABCEUIFHACUHGA
|
|
CDFIOJPKUBUC $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y $. $d y B $. $d y S $.
|
|
ax-inst.1 $e |- R |= A $.
|
|
ax-inst.2 $e |- T. |= [ ( \ x : al . B y : al ) = B ] $.
|
|
ax-inst.3 $e |- T. |= [ ( \ x : al . S y : al ) = S ] $.
|
|
ax-inst.4 $e |- [ x : al = C ] |= [ A = B ] $.
|
|
ax-inst.5 $e |- [ x : al = C ] |= [ R = S ] $.
|
|
$( Instantiate a theorem with a new term. The second and third hypotheses
|
|
are the HOL equivalent of set.mm "effectively not free in" predicate
|
|
(see set.mm's ax-17, or ~ ax17 ). $)
|
|
ax-inst $a |- S |= B $.
|
|
$}
|
|
|
|
${
|
|
$d x y R $. $d y B $.
|
|
insti.1 $e |- C : al $.
|
|
insti.2 $e |- B : bool $.
|
|
insti.3 $e |- R |= A $.
|
|
insti.4 $e |- T. |= [ ( \ x : al . B y : al ) = B ] $.
|
|
insti.5 $e |- [ x : al = C ] |= [ A = B ] $.
|
|
$( Instantiate a theorem with a new term. $)
|
|
insti $p |- R |= B $=
|
|
( hb tv ax-cb1 wv ax-17 ke kbr eqid ax-inst ) ABCDEFGGJKAMBGACNDGJOZACPQL
|
|
MGABNFRSZDERSUCLOUBTUA $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y A $. $d y B $. $d y C $. $d x y al $.
|
|
clf.1 $e |- A : be $.
|
|
clf.2 $e |- C : al $.
|
|
clf.3 $e |- [ x : al = C ] |= [ A = B ] $.
|
|
clf.4 $e |- T. |= [ ( \ x : al . B y : al ) = B ] $.
|
|
clf.5 $e |- T. |= [ ( \ x : al . C y : al ) = C ] $.
|
|
$( Evaluate a lambda expression. $)
|
|
clf $p |- T. |= [ ( \ x : al . A C ) = B ] $=
|
|
( kl tv kc ke kbr kt wc hb wl eqtypi weqi ax-cb1 beta a1i wv ht a17i hbl1
|
|
weq hbc hbov id ceq2 oveq12 insti ) ACDACEMZACNZOZEPQZURGOZFPQGRIBVBFABUR
|
|
GABCEHUAZISZBEFUSGPQZHJUBZUCVARACFMADNZOFPQRKUDZABCEHUEUFABBTCVBVGFPRBUKZ
|
|
VDADUGZVFABBTUHUHCPVGRVIVJVHUIAABCGVGURRVCIVJAABCEVGRHVJVHUJLULKUMBBTUTEV
|
|
BPVEFVIABURUSVCACUGZSHABUSGURVEVCVKVEAUSGVKIUCUNUOJUPUQ $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y A $. $d x y B $. $d x y C $. $d x y al $.
|
|
cl.1 $e |- A : be $.
|
|
cl.2 $e |- C : al $.
|
|
cl.3 $e |- [ x : al = C ] |= [ A = B ] $.
|
|
$( Evaluate a lambda expression. $)
|
|
cl $p |- T. |= [ ( \ x : al . A C ) = B ] $=
|
|
( vy tv ke kbr eqtypi wv ax-17 clf ) ABCJDEFGHIABCEAJKZBDEACKFLMGINAJOZPA
|
|
ACFRHSPQ $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x B $. $d y C $. $d x y S $. $d y T $. $d x al $. $d y be $.
|
|
ovl.1 $e |- A : ga $.
|
|
ovl.2 $e |- S : al $.
|
|
ovl.3 $e |- T : be $.
|
|
ovl.4 $e |- [ x : al = S ] |= [ A = B ] $.
|
|
ovl.5 $e |- [ y : be = T ] |= [ B = C ] $.
|
|
$( Evaluate a lambda expression in a binary operation. $)
|
|
ovl $p |- T. |= [ [ S \ x : al . \ y : be . A T ] = C ] $=
|
|
( kl kbr kc kt ke ht wl wov weq wc wtru df-ov a1i dfov2 distrl ceq1 eqtri
|
|
tv wv weqi cl ) CIJADBEFPZPZQZBEADFPZIRZPZJRZHSABCIJURABCUAZDUQBCEFKUBUBZ
|
|
LMUCZCUSURIRZJRZVCSVFCCUSVHTSCUDVFBCVGJAVDURIVELUEZMUETUSRVHRSUFABCIJURVE
|
|
LMUGUHUIBCJVGSVBVIMVGVBTQSUFABCDEFIKLUJUHUKULBCEVAHJACUTIACDFKUBLUEZMCVAG
|
|
HBEUMZJTQZVJVAGTQVLBVKJBEUNMUOACDFGIKLNUPUHOULUPUL $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
$(
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
Add propositional calculus definitions
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
$)
|
|
|
|
$c F. $. $( Contradiction term $)
|
|
$c /\ $. $( Conjunction term $)
|
|
$c ~ $. $( Negation term $)
|
|
$c ==> $. $( Implication term $)
|
|
$c ! $. $( For all term $)
|
|
$c ? $. $( There exists term $)
|
|
$c \/ $. $( Disjunction term $)
|
|
$c ?! $. $( There exists unique term $)
|
|
|
|
$( Contradiction term. $)
|
|
tfal $a term F. $.
|
|
$( Conjunction term. $)
|
|
tan $a term /\ $.
|
|
$( Negation term. $)
|
|
tne $a term ~ $.
|
|
$( Implication term. $)
|
|
tim $a term ==> $.
|
|
$( For all term. $)
|
|
tal $a term ! $.
|
|
$( There exists term. $)
|
|
tex $a term ? $.
|
|
$( Disjunction term. $)
|
|
tor $a term \/ $.
|
|
$( There exists unique term. $)
|
|
teu $a term ?! $.
|
|
|
|
${
|
|
$d f p q x y $.
|
|
$( Define the for all operator. $)
|
|
df-al $a |- T. |=
|
|
[ ! = \ p : ( al -> bool ) . [ p : ( al -> bool ) = \ x : al . T. ] ] $.
|
|
|
|
$( Define the constant false. $)
|
|
df-fal $a |- T. |= [ F. = ( ! \ p : bool . p : bool ) ] $.
|
|
|
|
$( Define the 'and' operator. $)
|
|
df-an $a |- T. |=
|
|
[ /\ = \ p : bool . \ q : bool . [ \ f : ( bool -> ( bool -> bool ) ) .
|
|
[ p : bool f : ( bool -> ( bool -> bool ) ) q : bool ] =
|
|
\ f : ( bool -> ( bool -> bool ) ) .
|
|
[ T. f : ( bool -> ( bool -> bool ) ) T. ] ] ] $.
|
|
|
|
$( Define the implication operator. $)
|
|
df-im $a |- T. |= [ ==> =
|
|
\ p : bool . \ q : bool . [ [ p : bool /\ q : bool ] = p : bool ] ] $.
|
|
|
|
$( Define the negation operator. $)
|
|
df-not $a |- T. |= [ ~ = \ p : bool . [ p : bool ==> F. ] ] $.
|
|
|
|
$( Define the existence operator. $)
|
|
df-ex $a |- T. |= [ ? = \ p : ( al -> bool ) . ( ! \ q : bool . [ ( ! \ x : al .
|
|
[ ( p : ( al -> bool ) x : al ) ==> q : bool ] ) ==> q : bool ] ) ] $.
|
|
|
|
$( Define the 'or' operator. $)
|
|
df-or $a |- T. |= [ \/ = \ p : bool . \ q : bool . ( ! \ x : bool .
|
|
[ [ p : bool ==> x : bool ] ==>
|
|
[ [ q : bool ==> x : bool ] ==> x : bool ] ] ) ] $.
|
|
|
|
$( Define the 'exists unique' operator. $)
|
|
df-eu $a |- T. |= [ ?! = \ p : ( al -> bool ) . ( ? \ y : al . ( ! \ x : al .
|
|
[ ( p : ( al -> bool ) x : al ) = [ x : al = y : al ] ] ) ) ] $.
|
|
$}
|
|
|
|
${
|
|
$d f p q x y $.
|
|
$( For all type. $)
|
|
wal $p |- ! : ( ( al -> bool ) -> bool ) $=
|
|
( vp vx hb ht tv kt kl ke kbr tal wv wtru wl weqi df-al eqtypri ) ADEZDER
|
|
BRBFZACGHZIJZHKGRDBUARSTRBLADCGMNONACBPQ $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Contradiction type. $)
|
|
wfal $p |- F. : bool $=
|
|
( vp hb tal tv kl kc tfal kt ht wal wv wl wc df-fal eqtypri ) BCBABADZEZF
|
|
GHBBIBCQBJBBAPBAKLMANO $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Conjunction type. $)
|
|
wan $p |- /\ : ( bool -> ( bool -> bool ) ) $=
|
|
( vp vq vf hb ht tv kbr kl kt ke tan wv wov wl wtru weqi df-an eqtypri )
|
|
DDDEZEZDADBTCDAFZDBFZTCFZGZHZTCIIUCGZHZJGZHZHKIDSAUIDDBUHTDEUEUGTDCUDDDDU
|
|
AUBUCTCLZDALDBLMNTDCUFDDDIIUCUJOOMNPNNCABQR $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Implication type. $)
|
|
wim $p |- ==> : ( bool -> ( bool -> bool ) ) $=
|
|
( vp vq hb ht tv tan kbr ke kl tim kt wan wv wov weqi wl df-im eqtypri )
|
|
CCCDZDCACBCAEZCBEZFGZTHGZIZIJKCSAUDCCBUCCUBTCCCTUAFLCAMZCBMNUEOPPABQR $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Negation type. $)
|
|
wnot $p |- ~ : ( bool -> bool ) $=
|
|
( vp hb ht tv tfal tim kbr kl tne kt wim wv wfal wov wl df-not eqtypri )
|
|
BBCBABADZEFGZHIJBBASBBBREFKBALMNOAPQ $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( There exists type. $)
|
|
wex $p |- ? : ( ( al -> bool ) -> bool ) $=
|
|
( vp vq vx hb ht tal tv kc tim kbr kl tex kt wal wim wv wc wov wl eqtypri
|
|
df-ex ) AEFZEFUCBGECGADUCBHZADHZIZECHZJKZLZIZUGJKZLZIZLMNUCEBUMEEFEGULEOE
|
|
ECUKEEEUJUGJPUCEGUIAOAEDUHEEEUFUGJPAEUDUEUCBQADQRECQZSTRUNSTRTADBCUBUA $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Disjunction type. $)
|
|
wor $p |- \/ : ( bool -> ( bool -> bool ) ) $=
|
|
( vp vq vx hb ht tal tv tim kbr kl kc tor kt wal wim wv wov wl wc df-or
|
|
eqtypri ) DDDEZEDADBFDCDAGZDCGZHIZDBGZUDHIZUDHIZHIZJZKZJZJLMDUBAULDDBUKUB
|
|
DFUJDNDDCUIDDDUEUHHODDDUCUDHODAPDCPZQDDDUGUDHODDDUFUDHODBPUMQUMQQRSRRCABT
|
|
UA $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( There exists unique type. $)
|
|
weu $p |- ?! : ( ( al -> bool ) -> bool ) $=
|
|
( vp vy vx hb ht tex tal tv kc ke kbr kl teu kt wex wv wc weqi wl eqtypri
|
|
wal df-eu ) AEFZEFUDBGACHADUDBIZADIZJZUFACIZKLZKLZMZJZMZJZMNOUDEBUNUDEGUM
|
|
APAECULUDEHUKAUBAEDUJEUGUIAEUEUFUDBQADQZRAUFUHUOACQSSTRTRTADCBUCUA $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p q x y al $. $d p q y F $.
|
|
alval.1 $e |- F : ( al -> bool ) $.
|
|
$( Value of the for all predicate. $)
|
|
alval $p |- T. |= [ ( ! F ) = [ F = \ x : al . T. ] ] $=
|
|
( vp hb tal kc ht tv kt kl ke kbr wal wc df-al ceq1 wv weqi wtru wl oveq1
|
|
weq id cl eqtri ) FGCHAFIZEUHEJZABKLZMNZLZCHCUJMNZKUHFGCAOZDPUHFCGKULUNDA
|
|
BEQRUHFEUKUMCUHUIUJUHESZAFBKUAUBZTDUHUHFUIUJCMUICMNZUHUDUOUPUQUHUICUODTUE
|
|
UCUFUG $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$d x F $.
|
|
$( Value of the 'there exists' predicate. $)
|
|
exval $p |- T. |= [ ( ? F ) = ( ! \ q : bool . [ ( ! \ x : al .
|
|
[ ( F x : al ) ==> q : bool ] ) ==> q : bool ] ) ] $=
|
|
( vp hb tex kc ht tal tv tim kbr kl kt wc ceq1 wim wv wex df-ex wal wl ke
|
|
wov weqi id oveq1 leq ceq2 cl eqtri ) GHDIAGJZFKGCKABUNFLZABLZIZGCLZMNZOZ
|
|
IZURMNZOZIZOZDIKGCKABDUPIZURMNZOZIZURMNZOZIZPUNGHDAUAZEQUNGDHPVEVMEABFCUB
|
|
RUNGFVDVLDGGJZGKVCGUCZGGCVBGGGVAURMSUNGKUTAUCZAGBUSGGGUQURMSAGUOUPUNFTZAB
|
|
TZQZGCTZUFZUDZQZVTUFZUDZQEVNGVCVKKUODUENZVOWEGGCVBVJWFWDGGGVAURVIMWFSWCVT
|
|
UNGUTVHKWFVPWBAGBUSVGWFWAGGGUQURVFMWFSVSVTAGUPUOWFDVQVRWFUNUODVQEUGUHRUIU
|
|
JUKUIUJUKULUM $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
$( Value of the 'exists unique' predicate. $)
|
|
euval $p |- T. |= [ ( ?! F ) = ( ? \ y : al . ( ! \ x : al .
|
|
[ ( F x : al ) = [ x : al = y : al ] ] ) ) ] $=
|
|
( vp hb teu kc tex tal tv ke kbr kl kt wc ceq1 wv weqi ht weu wex wal weq
|
|
df-eu wl id oveq1 leq ceq2 cl eqtri ) GHDIAGUAZFJACKABUNFLZABLZIZUPACLZMN
|
|
ZMNZOZIZOZIZOZDIJACKABDUPIZUSMNZOZIZOZIZPUNGHDAUBZEQUNGDHPVEVLEABCFUFRUNG
|
|
FVDVKDUNGJVCAUCZAGCVBUNGKVAAUDZAGBUTGUQUSAGUOUPUNFSZABSZQZAUPURVPACSTZTZU
|
|
GZQZUGZQEUNGVCVJJUODMNZVMWBAGCVBVIWCWAUNGVAVHKWCVNVTAGBUTVGWCVSGGGUQUSVFM
|
|
WCGUEVQVRAGUPUOWCDVOVPWCUNUODVOETUHRUIUJUKUJUKULUM $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d f p q x A $. $d f q x B $.
|
|
imval.1 $e |- A : bool $.
|
|
$( Value of negation. $)
|
|
notval $p |- T. |= [ ( ~ A ) = [ A ==> F. ] ] $=
|
|
( vp hb tne kc tv tfal tim kbr kl kt wnot wc df-not ceq1 wim wv wfal wov
|
|
ke weqi id oveq1 cl eqtri ) DEAFDCDCGZHIJZKZAFAHIJZLDDEAMBNDDAELUIMBCOPDD
|
|
CUHUJADDDUGHIQDCRZSTBDDDUGHAIUGAUAJZQUKSULDUGAUKBUBUCUDUEUF $.
|
|
$( [8-Oct-2014] $)
|
|
|
|
imval.2 $e |- B : bool $.
|
|
$( Value of the implication. $)
|
|
imval $p |- T. |= [ [ A ==> B ] = [ [ A /\ B ] = A ] ] $=
|
|
( vp vq hb tim kbr tv tan ke kl kt wim wov wan wv weqi id df-im weq oveq1
|
|
oveq oveq12 oveq2 ovl eqtri ) GABHIABGEGFGEJZGFJZKIZUILIZMMZIABKIZALIZNGG
|
|
GABHOCDPGGGABHNUMOCDEFUAUDGGGEFULAUJKIZALIUOABGUKUIGGGUIUJKQGERZGFRZPZUQS
|
|
CDGGGUKUIUPLUIALIZAGUBZUSUQGGGUIUJAKUTQUQURUTGUIAUQCSTZUCVBUEGGGUPAUNLUJB
|
|
LIZVAGGGAUJKQCURPCGGGAUJKVCBQCURVCGUJBURDSTUFUCUGUH $.
|
|
$( [9-Oct-2014] $)
|
|
|
|
$( Value of the disjunction. $)
|
|
orval $p |- T. |= [ [ A \/ B ] = ( ! \ x : bool .
|
|
[ [ A ==> x : bool ] ==> [ [ B ==> x : bool ] ==> x : bool ] ] ) ] $=
|
|
( vp vq hb tor kbr tal tv tim kl kc kt wov wim wv oveq1 wor df-or oveq ht
|
|
wal wl wc ke weqi id leq ceq2 oveq2 ovl eqtri ) HBCIJBCHFHGKHAHFLZHALZMJZ
|
|
HGLZUQMJZUQMJZMJZNZOZNNZJKHABUQMJZCUQMJZUQMJZMJZNZOZPHHHBCIUADEQHHHBCIPVE
|
|
UADEAFGUBUCHHHFGVDKHAVFVAMJZNZOVKBCHHUDZHKVCHUEZHHAVBHHHURVAMRHHHUPUQMRHF
|
|
SZHASZQZHHHUTUQMRHHHUSUQMRHGSZVQQZVQQZQZUFZUGDEVNHVCVMKUPBUHJZVOWCHHAVBVL
|
|
WDWBHHHURVAVFMWDRVRWAHHHUPUQBMWDRVPVQWDHUPBVPDUIUJTTUKULVNHVMVJKUSCUHJZVO
|
|
HHAVLHHHVFVAMRHHHBUQMRDVQQZWAQZUFHHAVLVIWEWGHHHVFVAMWEVHRWFWAHHHUTUQVGMWE
|
|
RVTVQHHHUSUQCMWERVSVQWEHUSCVSEUIUJTTUMUKULUNUO $.
|
|
$( [9-Oct-2014] $)
|
|
|
|
$( Value of the conjunction. $)
|
|
anval $p |- T. |= [ [ A /\ B ] = [ \ f : ( bool -> ( bool -> bool ) ) .
|
|
[ A f : ( bool -> ( bool -> bool ) ) B ] =
|
|
\ f : ( bool -> ( bool -> bool ) ) .
|
|
[ T. f : ( bool -> ( bool -> bool ) ) T. ] ] ] $=
|
|
( vp vq hb tan kbr ht tv kl kt ke wov wv wl weqi oveq1 wan df-an oveq weq
|
|
wtru id leq oveq2 ovl eqtri ) HBCIJBCHFHGHHHKKZAHFLZHGLZUKALZJZMZUKANNUNJ
|
|
ZMZOJZMMZJUKABCUNJZMZUROJZNHHHBCIUADEPHHHBCINUTUADEAFGUBUCHHHFGUSUKABUMUN
|
|
JZMZUROJVCBCUKHKZUPURUKHAUOHHHULUMUNUKAQZHFQZHGQZPZRZUKHAUQHHHNNUNVGUEUEP
|
|
RZSDEVFVFHUPURVEOULBOJZVFUDZVKVLUKHAUOVDVMVJHHHULUMBUNVMVGVHVIVMHULBVHDSU
|
|
FTUGTVFVFHVEURVBOUMCOJZVNUKHAVDHHHBUMUNVGDVIPZRVLUKHAVDVAVOVPHHHBUMUNVOCV
|
|
GDVIVOHUMCVIESUFUHUGTUIUJ $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p F $. $d p al $.
|
|
ax4g.1 $e |- F : ( al -> bool ) $.
|
|
ax4g.2 $e |- A : al $.
|
|
$( If ` F ` is true for all ` x : al ` , then it is true for ` A ` . $)
|
|
ax4g $p |- ( ! F ) |= ( F A ) $=
|
|
( vp kt kc tal hb ht wal wc trud kl ke kbr ax-cb1 id alval mpbi ceq1 hbth
|
|
a1i eqtri mpbir ) GCBHZICHZUHAJKJICALDMNZJUGAFGOZBHGUHAJCBDEMAJBCUHUJDEUH
|
|
CUJPQZUHUHGUHUIRZSUHUKPQUHULAFCDTUDUAUBAFGBUHEUIUCUEUF $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax4.1 $e |- A : bool $.
|
|
$( If ` A ` is true for all ` x : al ` , then it is true for ` A ` . $)
|
|
ax4 $p |- ( ! \ x : al . A ) |= A $=
|
|
( kl tv kc tal hb wl wv ax4g ke kbr ax-cb1 beta a1i mpbi ) ABCEZABFZGZCHS
|
|
GZATSAIBCDJABKLZUACMNUBUAUBUCOAIBCDPQR $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x R $. $d x al $.
|
|
alrimiv.1 $e |- R |= A $.
|
|
$( If one can prove ` R |= A ` where ` R ` does not contain ` x ` , then
|
|
` A ` is true for all ` x ` . $)
|
|
alrimiv $p |- R |= ( ! \ x : al . A ) $=
|
|
( kl kt ke kbr tal kc hb ax-cb2 wtru eqtru eqcomi leq ax-cb1 wl alval a1i
|
|
mpbir ) ABCFZABGFHIZJUCKZDALBCGDCDEMZLGCDNCDEOPQUEUDHIDCDERABUCALBCUFSTUA
|
|
UB $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x B $. $d x C $. $d x al $.
|
|
cla4v.1 $e |- A : bool $.
|
|
cla4v.2 $e |- B : al $.
|
|
cla4v.3 $e |- [ x : al = B ] |= [ A = C ] $.
|
|
$( If ` A ( x ) ` is true for all ` x : al ` , then it is true for
|
|
` C = A ( B ) ` . $)
|
|
cla4v $p |- ( ! \ x : al . A ) |= C $=
|
|
( kl kc tal hb wl ax4g ke kbr ax-cb1 cl a1i mpbi ) ABCIZDJZEKUAJZADUAALBC
|
|
FMGNZUBEOPUCUBUCUDQALBCEDFGHRST $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p A $.
|
|
pm2.21.1 $e |- A : bool $.
|
|
$( A falsehood implies anything. $)
|
|
pm2.21 $p |- F. |= A $=
|
|
( vp tfal tal hb tv kl kc wfal id ke kbr df-fal a1i mpbi weqi cla4v syl
|
|
wv ) DEFCFCGZHIZADUBDDJKDUBLMDJCNOPFCUAAAFCTZBUAALMFUAAUCBQKRS $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d f x y A $. $d f x y B $.
|
|
dfan2.1 $e |- A : bool $.
|
|
dfan2.2 $e |- B : bool $.
|
|
$( An alternative defintion of the "and" term in terms of the context
|
|
conjunction. $)
|
|
dfan2 $p |- T. |= [ [ A /\ B ] = ( A , B ) ] $=
|
|
( vf vx vy kbr kt hb kl kc wl ke id a1i weqi oveq eqid wtru tan kct ht tv
|
|
wan wov trud wv wc anval mpbi ceq1 ovl eqtri cl 3eqtr3i mpbir simpl eqtru
|
|
jca simpr oveq12 eqcomi leq ax-cb1 dedi ) ABUAHZABUBZVGABIAVGVGJJJABUAUEC
|
|
DUFZUGZJJJJUCZUCZEABVLEUDZHZKZJFJGJFUDZKZKZLZVLEIIVMHZKZVRLZVGAIVLJVOVRVL
|
|
JEVNJJJABVMVLEUHZCDUFZMZJVKFVQJJGVPJFUHZMMZUIVLJVRVOVGWAWEWGVGVOWANHZVGVG
|
|
VIOVGWHNHZVGVIEABCDUJZPUKZULVSANHVGVIVLJEVNAVRWDWGJVNABVRHZAVMVRNHZWDJJJA
|
|
BVMWMVRWCCDWMVLVMVRWCWGQZOZRWLANHWMWNJJJFGVPAAABWFCDVPANHZJVPAWFCQZOJAJGU
|
|
DZBNHZJWRBJGUHZDQZCSUMPUNUOPWBINHVGVIVLJEVTIVRJJJIIVMWCTTUFZWGJVTIIVRHZIW
|
|
MXBJJJIIVMWMVRWCTTWORXCINHWMWNJJJFGVPIIIIWFTTVPINHZJVPIWFTQZOJIWRINHZJWRI
|
|
WTTQZTSUMPUNUOPUPUQIBVGVJJVOJFJGWRKZKZLZWAXILZVGBIVLJVOXIWEJVKFXHJJGWRWTM
|
|
MZUIZVLJXIVOVGWAWEXLWKULXJBNHVGVIJXJABXIHZBIXMVLJEVNXNXIWDXLJJJABVMVMXINH
|
|
ZXIWCCDXOVLVMXIWCXLQZOZRUOXNBNHITJJJFGWRWRBABWTCDJWRWPWQWTSWSXAOUMPUNPXKI
|
|
NHVGVIVLJEVTIXIXBXLJVTIIXIHZIXOXBJJJIIVMXOXIWCTTXQRXRINHXOXPJJJFGWRWRIIIW
|
|
TTTJWRXDXEWTSXFXGOUMPUNUOPUPUQUTWHVGVHVLJEVNVTVHWDJVTVNVHXBJJJIIAVMVHBWCT
|
|
TAVHABCDURZUSBVHABCDVAUSVBVCVDWIVHAVHXSVEWJPUQVF $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
hbct.1 $e |- A : bool $.
|
|
hbct.2 $e |- B : al $.
|
|
hbct.3 $e |- C : bool $.
|
|
hbct.4 $e |- R |= [ ( \ x : al . A B ) = A ] $.
|
|
hbct.5 $e |- R |= [ ( \ x : al . C B ) = C ] $.
|
|
$( Hypothesis builder for context conjunction. $)
|
|
hbct $p |- R |= [ ( \ x : al . ( A , C ) B ) = ( A , C ) ] $=
|
|
( kt kl kc ke kbr hb tan wan ht kct ax-cb1 trud wct wov dfan2 eqcomi a17i
|
|
hbov wtru adantr hbxfrf mpdan ) FLABCEUAZMDNUNOPFABCMDNCOPFJUBZUCAQBCERPZ
|
|
DLFUNCEGIUDHQUPUNLQQQCERSGIUECEGIUFUGFLABUPMDNUPOPAQQQBCDERFSGHIAQQQTTBRD
|
|
FSHUOUHJKUIUJUKULUM $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
mp.1 $e |- T : bool $.
|
|
mp.2 $e |- R |= S $.
|
|
mp.3 $e |- R |= [ S ==> T ] $.
|
|
$( Modus ponens. $)
|
|
mpd $p |- R |= T $=
|
|
( tan kbr kct tim ke ax-cb1 ax-cb2 imval a1i mpbi mpbir dfan2 simprd ) AB
|
|
CBCGHZBCIZABTAEBCJHZTBKHZAFUBUCKHABAELZBCBAEMZDNOPQTUAKHAUDBCUEDROPS $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
imp.1 $e |- S : bool $.
|
|
imp.2 $e |- T : bool $.
|
|
imp.3 $e |- R |= [ S ==> T ] $.
|
|
$( Importation deduction. $)
|
|
imp $p |- ( R , S ) |= T $=
|
|
( kct tim kbr ax-cb1 simpr adantr mpd ) ABGBCEABBCHIZAFJDKABNFDLM $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ex.1 $e |- ( R , S ) |= T $.
|
|
$( Exportation deduction. $)
|
|
ex $p |- R |= [ S ==> T ] $=
|
|
( tan kbr ke tim kct wan ax-cb1 wctr ax-cb2 wov wctl dfan2 a1i wct simpr
|
|
hb simpld jca ded eqtri imval mpbir ) BCEFZBGFZBCHFZATUGBCIZBATTTBCEJABCA
|
|
BIZDKZLZCUKDMZNUGUJGFAABULOZBCUMUNPQAUJBAUJIBCAUJUOBCUMUNRSUAUKBCABUOUMSD
|
|
UBUCUDZUIUHGFAUHAUPKBCUMUNUEQUF $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
notval2.1 $e |- A : bool $.
|
|
$( Another way two write ` ~ A ` , the negation of ` A ` . $)
|
|
notval2 $p |- T. |= [ ( ~ A ) = [ A = F. ] ] $=
|
|
( hb tne kc tfal tim kbr ke kt wnot wc notval kct wim wov simpr simpl mpd
|
|
wfal pm2.21 adantl ded ax-cb2 mpbi ex dedi eqtri ) CDAEAFGHZAFIHZJCCDAKBL
|
|
ABMUIUJUIAFUIANAFTUIACCCAFGOBTPZBQUIAUKBRSFUIAABUAUKUBUCZUJAFAFUJANUJAUJU
|
|
IULUDZBQUJAUMBRUEUFUGUH $.
|
|
$( [9-Oct-2014] $)
|
|
|
|
$( One side of ~ notnot . $)
|
|
notnot1 $p |- A |= ( ~ ( ~ A ) ) $=
|
|
( tne kc tfal tim kbr kct wfal hb wnot simpl simpr ax-cb1 notval a1i mpbi
|
|
wc ke mpd ex mpbir ) CADZEFGZCUCDZAAUCEAUCHZAEIAUCBJJCAKBRZLZUCAEFGZUFAUCB
|
|
UGMUCUISGUFAUFUHNABOPQTUAUEUDSGABUCUGOPUB $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
con2d.1 $e |- T : bool $.
|
|
con2d.2 $e |- ( R , S ) |= ( ~ T ) $.
|
|
$( A contraposition deduction. $)
|
|
con2d $p |- ( R , T ) |= ( ~ S ) $=
|
|
( tfal tim kbr tne kc kct wfal ke ax-cb1 notval a1i mpbi imp an32s ex wct
|
|
wctl wctr mpbir ) BFGHZIBJZACKZUGBFFABCABKZCFDLICJZCFGHZUHEUIUJMHUHUIUHEN
|
|
ZCDOPQRSTUFUEMHUGACABUKUBDUABABUKUCOPUD $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
con3d.1 $e |- ( R , S ) |= T $.
|
|
$( A contraposition deduction. $)
|
|
con3d $p |- ( R , ( ~ T ) ) |= ( ~ S ) $=
|
|
( tne kc hb wnot kct ax-cb2 wc notnot1 syl con2d ) ABECFZGGECHCABIZDJZKPC
|
|
EOFDCQLMN $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x A $. $d x B $. $d x T $.
|
|
ecase.1 $e |- A : bool $.
|
|
ecase.2 $e |- B : bool $.
|
|
ecase.3 $e |- T : bool $.
|
|
ecase.4 $e |- R |= [ A \/ B ] $.
|
|
ecase.5 $e |- ( R , A ) |= T $.
|
|
ecase.6 $e |- ( R , B ) |= T $.
|
|
$( Elimination by cases. $)
|
|
ecase $p |- R |= T $=
|
|
( vx tim kbr ex hb wim wov ke oveq2 oveq12 tal tv kl tor ax-cb1 orval a1i
|
|
kc mpbi wv weqi id cla4v syl mpd ) CBDLMZDGCBDJNCADLMZUPDLMZOOOUPDLPOOOBD
|
|
LPFGQGQCADINCUAOKAOKUBZLMZBUSLMZUSLMZLMZUCUHZUQURLMZABUDMZVDCHVFVDRMCVFCH
|
|
UEKABEFUFUGUIOKVCDVEOOOUTVBLPOOOAUSLPEOKUJZQZOOOVAUSLPOOOBUSLPFVGQZVGQZQG
|
|
OOOUTVBUQLUSDRMZURPVHVJOOOAUSLVKDPEVGVKOUSDVGGUKULZSOOOVAUSUPLVKDPVIVGOOO
|
|
BUSLVKDPFVGVLSVLTTUMUNUOUO $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x A $. $d x B $.
|
|
olc.1 $e |- A : bool $.
|
|
olc.2 $e |- B : bool $.
|
|
$( Or introduction. $)
|
|
olc $p |- B |= [ A \/ B ] $=
|
|
( vx hb tv tim kbr kl kt ke tor wim wv wov wtru kct simpl ex simpr adantr
|
|
mpd eqtru eqcomi leq tal kc wor orval wl alval eqtri a1i mpbir ) FEAFEGZH
|
|
IZBUPHIZUPHIZHIZJZFEKJLIZABMIZBFFEUTKBFFFUQUSHNFFFAUPHNCFEOZPZFFFURUPHNFF
|
|
FBUPHNDVDPZVDPPZFKUTBQUTBBUQUSBUQUSBURUPBURRBUPVDBURDVFSBURDVFUAUCTVEUBTU
|
|
DUEUFVCVBLIBDFVCUGVAUHVBKFFFABMUICDPEABCDUJFEVAFFEUTVGUKULUMUNUO $.
|
|
$( [9-Oct-2014] $)
|
|
|
|
$( Or introduction. $)
|
|
orc $p |- A |= [ A \/ B ] $=
|
|
( vx hb tv tim kbr kl kt ke tor wim wv wov wtru kct simpl ex simpr adantr
|
|
mpd eqtru eqcomi leq tal kc wor orval wl alval eqtri a1i mpbir ) FEAFEGZHI
|
|
ZBUPHIZUPHIZHIZJZFEKJLIZABMIZAFFEUTKAFFFUQUSHNFFFAUPHNCFEOZPZFFFURUPHNFFF
|
|
BUPHNDVDPZVDPPZFKUTAQUTAAUQUSAUQRZURUPVHURUPVHAUPVDAUQCVESAUQCVEUAUCVFUBT
|
|
TUDUEUFVCVBLIACFVCUGVAUHVBKFFFABMUICDPEABCDUJFEVAFFEUTVGUKULUMUNUO $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p x F $. $d x R $. $d p x T $. $d p x al $.
|
|
exlimdv2.1 $e |- F : ( al -> bool ) $.
|
|
exlimdv2.2 $e |- ( R , ( F x : al ) ) |= T $.
|
|
$( Existential elimination. $)
|
|
exlimdv2 $p |- ( R , ( ? F ) ) |= T $=
|
|
( vp tex kc kct tal tv tim kbr kl hb wc ke wim ax-cb2 ex ht adantr ax-cb1
|
|
alrimiv wex wctl simpr wct exval a1i mpbi wal wv wov wl weqi id oveq2 leq
|
|
ceq2 oveq12 cla4v syl mpd ) DICJZKZLABCABMZJZENOZPZJZEEDVJKZGUAZDVGVMABVKD
|
|
DVJEGUBUFAQUCZQICAUGFRZUDVHLQHLABVJQHMZNOZPZJZVRNOZPJZVMENOZVGWCVHDVGDVJE
|
|
VNGUEUHZVQUIVGWCSOVHDVGWEVQUJABHCFUKULUMQHWBEWDQQQWAVRNTVPQLVTAUNZAQBVSQQ
|
|
QVJVRNTAQCVIFABUORZQHUOZUPZUQZRZWHUPVOQQQWAVRVMNVRESOZETWKWHVPQVTVLLWLWFW
|
|
JAQBVSVKWLWIQQQVJVRNWLETWGWHWLQVREWHVOURUSZUTVAVBWMVCVDVEVF $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y z A $. $d x y z R $. $d x y z T $. $d x y z al $.
|
|
exlimdv.1 $e |- ( R , A ) |= T $.
|
|
$( Existential elimination. $)
|
|
exlimdv $p |- ( R , ( ? \ x : al . A ) ) |= T $=
|
|
( vy vz hb tv kc wv wc tim kbr wim kt ht ax-17 ke kl kct ax-cb1 wl ax-cb2
|
|
wctr wov ex ax-hbl1 hbc hbov weqi beta eqcomi a1i id ceq2 eqtri oveq1 imp
|
|
insti exlimdv2 ) AGABCUAZDEAIBCDCEDCUBZFUCUFZUDZDVCAGJZKZEAIVCVGVFAGLZMZE
|
|
VDFUEZABHCENOVHENOVGDVIIIIVHENPVJVKUGDCEFUHAIIIBVHAHJZENQPVJAHLZVKAIIIRRB
|
|
NVLPVMSAAIBVGVLVCQVFVIVMAAIBCVLVEVMUIAABVGVLVIVMSUJAIBEVLVKVMSUKIIICEVHNA
|
|
BJZVGTOZPVEVKICVCVNKZVHVOVECVPTOVOAVNVGABLZVIULZIVPCQAIVCVNVFVQMAIBCVEUMU
|
|
NUOAIVNVGVCVOVFVQVOVRUPUQURUSVAUTVB $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p x A $. $d p x F $. $d p x al $.
|
|
ax4e.1 $e |- F : ( al -> bool ) $.
|
|
ax4e.2 $e |- A : al $.
|
|
$( Existential introduction. $)
|
|
ax4e $p |- ( F A ) |= ( ? F ) $=
|
|
( vp vx tal hb tv kc tim kbr kl tex kct wv wc wim ke ht wal wl simpl weqi
|
|
wov id ceq2 oveq1 cla4v adantl mpd ex alrimiv exval a1i mpbir ) HIFHAGCAG
|
|
JZKZIFJZLMZNZKZUTLMZNKZOCKZCBKZIFVDVGVGVCUTVGVCPVGUTIFQZVGVCAICBDERZAIUAI
|
|
HVBAUBAIGVAIIIUSUTLSAICURDAGQZRZVHUFZUCRUDVCVGVGUTLMZAGVABVMVLEIIIUSUTVGL
|
|
URBTMZSVKVHAIURBCVNDVJVNAURBVJEUEUGUHUIUJVIUKULUMUNVFVETMVGVIAGFCDUOUPUQ
|
|
$.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x B $. $d x C $. $d x al $.
|
|
cla4ev.1 $e |- A : bool $.
|
|
cla4ev.2 $e |- B : al $.
|
|
cla4ev.3 $e |- [ x : al = B ] |= [ A = C ] $.
|
|
$( Existential introduction. $)
|
|
cla4ev $p |- C |= ( ? \ x : al . A ) $=
|
|
( kl kc tex hb tv ke kbr eqtypi id cl a1i mpbir wl ax4e syl ) EABCIZDJZKU
|
|
DJEUEEELCEABMDNOFHPZQUEENOEUFALBCEDFGHRSTADUDALBCFUAGUBUC $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
19.8a.1 $e |- A : bool $.
|
|
$( Existential introduction. $)
|
|
19.8a $p |- A |= ( ? \ x : al . A ) $=
|
|
( kl tv kc tex ax-id ke kbr hb beta a1i mpbir wl wv ax4e syl ) CABCEZABFZ
|
|
GZHTGCUBCCDIUBCJKCDALBCDMNOAUATALBCDPABQRS $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
$(
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
Type definition mechanism
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
$)
|
|
|
|
$c typedef $.
|
|
|
|
$( Internal axiom for mmj2 use. $)
|
|
wffMMJ2d $a wff typedef al ( A , B ) C $.
|
|
|
|
${
|
|
$d x A $. $d x R $. $d x F $.
|
|
ax-tdef.1 $e |- B : al $.
|
|
ax-tdef.2 $e |- F : ( al -> bool ) $.
|
|
ax-tdef.3 $e |- T. |= ( F B ) $.
|
|
ax-tdef.4 $e |- typedef be ( A , R ) F $.
|
|
$( Type of the abstraction function. $)
|
|
wabs $a |- A : ( al -> be ) $.
|
|
|
|
$( Type of the representation function. $)
|
|
wrep $a |- R : ( be -> al ) $.
|
|
|
|
$( The type definition axiom. The last hypothesis corresponds to the actual
|
|
definition one wants to make; here we are defining a new type ` be ` and
|
|
the definition will provide us with pair of bijections ` A , R ` mapping
|
|
the new type ` be ` to the subset of the old type ` al ` such that
|
|
` F x ` is true. In order for this to be a valid (conservative)
|
|
extension, we must ensure that the new type is non-empty, and for that
|
|
purpose we need a witness ` B ` that ` F ` is not always false. $)
|
|
ax-tdef $a |- T. |= ( ( ! \ x : be . [ ( A ( R x : be ) ) = x : be ] ) ,
|
|
( ! \ x : al . [ ( F x : al ) = [ ( R ( A x : al ) ) = x : al ] ] ) ) $.
|
|
$}
|
|
$(
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
Extensionality
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
$)
|
|
|
|
${
|
|
$d f x $.
|
|
$( The eta-axiom: a function is determined by its values. $)
|
|
ax-eta $a |- T. |= ( ! \ f : ( al -> be ) .
|
|
[ \ x : al . ( f : ( al -> be ) x : al ) = f : ( al -> be ) ] ) $.
|
|
$}
|
|
|
|
${
|
|
$d f x F $. $d f x al $. $d f x be $.
|
|
eta.1 $e |- F : ( al -> be ) $.
|
|
$( The eta-axiom: a function is determined by its values. $)
|
|
eta $p |- T. |= [ \ x : al . ( F x : al ) = F ] $=
|
|
( vf kt tal ht tv kc kl ke kbr ax-eta hb weq wv wc wl weqi id ceq1 oveq12
|
|
wov leq cla4v syl ) GHABIZFACUIFJZACJZKZLZUJMNZLKACDUKKZLZDMNZABCFOUIFUND
|
|
UQUIUIPUMUJMUIQZABCULABUJUKUIFRZACRZSZTZUSUEEUIUIPUMUJUPMUJDMNZDURVBUSABC
|
|
ULUOVCVAABUKUJVCDUSUTVCUIUJDUSEUAUBZUCUFVDUDUGUH $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p z A $. $d p z B $. $d p x y z al $. $d p be $.
|
|
cbvf.1 $e |- A : be $.
|
|
cbvf.2 $e |- T. |= [ ( \ y : al . A z : al ) = A ] $.
|
|
cbvf.3 $e |- T. |= [ ( \ x : al . B z : al ) = B ] $.
|
|
cbvf.4 $e |- [ x : al = y : al ] |= [ A = B ] $.
|
|
$( Change bound variables in a lambda abstraction. $)
|
|
cbvf $p |- T. |= [ \ x : al . A = \ y : al . B ] $=
|
|
( vp ht kl tv kc kt wc ke kbr wl eqtypi weqi ax-17 clf weq hbl hbc ax-cb1
|
|
wv hb hbl1 hbov ceq2 beta eqcomi a1i eqtri oveq12 insti leq eta 3eqtr3i
|
|
id ) ABMALACFNZALOZPZNALADGNZVFPZNQVEVHABLVGABVEVFABCFHUAZALUJZRZUAABLVGV
|
|
IQVLADEVEADOZPZGSTVGVISTVFQVKBVGVIVLABVHVFABDGBFGACOVMSTHKUBZUAZVKRZUCABC
|
|
EFGVMHADUJZKJAACVMAEOZVRAEUJZUDUEABBUKDVGVSVISQBUFZVLVTVQABBUKMMDSVSWAVTU
|
|
DAABDVFVSVEQVJVKVTAABDCFVSQHVTIUGAADVFVSVKVTUDZUHAABDVFVSVHQVPVKVTAABDGVS
|
|
QVOVTADFNVSPFSTQIUIULWBUHUMBBUKVNGVGSVMVFSTZVIWAABVEVMVJVRRVOABVMVFVEWCVJ
|
|
VRWCAVMVFVRVKUCVDZUNZBGVHVMPZVIWCVOGWFSTWCVNVGSTWCWEUIBWFGQABVHVMVPVRRABD
|
|
GVOUOUPUQABVMVFVHWCVPVRWDUNURUSUTVAABLVEVJVBABLVHVPVBVC $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y z A $. $d x z B $. $d x y z al $. $d y be $.
|
|
cbv.1 $e |- A : be $.
|
|
cbv.2 $e |- [ x : al = y : al ] |= [ A = B ] $.
|
|
$( Change bound variables in a lambda abstraction. $)
|
|
cbv $p |- T. |= [ \ x : al . A = \ y : al . B ] $=
|
|
( vz tv wv ax-17 ke kbr eqtypi cbvf ) ABCDIEFGABDEAIJZGAIKZLABCFQBEFACJAD
|
|
JMNGHORLHP $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y z A $. $d y z B $. $d y z R $. $d x y z al $. $d z be $.
|
|
leqf.1 $e |- A : be $.
|
|
leqf.2 $e |- R |= [ A = B ] $.
|
|
leqf.3 $e |- T. |= [ ( \ x : al . R y : al ) = R ] $.
|
|
$( Equality theorem for lambda abstraction, using bound variable instead of
|
|
distinct variables. $)
|
|
leqf $p |- R |= [ \ x : al . A = \ x : al . B ] $=
|
|
( vz ht kl tv kc wc ke kbr a1i hb wl wv ax-cb1 beta eqtypi 3eqtr4i kt weq
|
|
ax-17 ax-hbl1 hbc hbov weqi id ceq2 oveq12 eqid ax-inst leq eta 3eqtr3i )
|
|
ABLAKACEMZAKNZOZMZAKACFMZVCOZMZGVBVFABKVDABVBVCABCEHUAZAKUBZPZUAABKVDVGGV
|
|
KACDVBACNZOZVFVLOZQRVDVGQRVCGGBEFGVMVNHIVMEQRGEFQRGIUCZABCEHUDSVNFQRGVOAB
|
|
CFBEFGHIUEZUDSUFABBTCVDADNZVGQUGBUHZVKADUBZABVFVCABCFVPUAZVJPABBTLLCQVQVR
|
|
VSUIAABCVCVQVBUGVIVJVSAABCEVQHVSUJAACVCVQVJVSUIZUKAABCVCVQVFUGVTVJVSAABCF
|
|
VQVPVSUJWAUKULJBBTVMVNVDQVLVCQRZVGVRABVBVLVIACUBZPABVFVLVTWCPABVLVCVBWBVI
|
|
WCWBAVLVCWCVJUMZUNZUOABVLVCVFWBVTWCWEUOUPTGWBWDVOUQURUSVEVBQRGVOABKVBVIUT
|
|
SVHVFQRGVOABKVFVTUTSVA $.
|
|
$( [8-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y A $. $d y R $. $d x y al $.
|
|
alrimi.1 $e |- R |= A $.
|
|
alrimi.2 $e |- T. |= [ ( \ x : al . R y : al ) = R ] $.
|
|
$( If one can prove ` R |= A ` where ` R ` does not contain ` x ` , then
|
|
` A ` is true for all ` x ` . $)
|
|
alrimi $p |- R |= ( ! \ x : al . A ) $=
|
|
( kl kt ke kbr tal kc hb ax-cb2 wtru eqtru eqcomi leqf ax-cb1 alval mpbir
|
|
wl a1i ) ABDHZABIHJKZLUEMZEANBCDIEDEFOZNIDEPDEFQRGSUGUFJKEDEFTABUEANBDUHU
|
|
CUAUDUB $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y z A $. $d y z R $. $d y z T $. $d x y z al $.
|
|
exlimd.1 $e |- ( R , A ) |= T $.
|
|
exlimd.2 $e |- T. |= [ ( \ x : al . R y : al ) = R ] $.
|
|
exlimd.3 $e |- T. |= [ ( \ x : al . T y : al ) = T ] $.
|
|
$( Existential elimination. $)
|
|
exlimd $p |- ( R , ( ? \ x : al . A ) ) |= T $=
|
|
( vz kl kc tal tv tim kbr hb wim wov kt tex ax-cb2 ax-cb1 wctr wl wv wctl
|
|
kct wc id ex wtru adantl ax-17 ax-hbl1 hbc hbov weqi beta eqcomi a1i ceq2
|
|
ht ke eqtri oveq1 oveq2 insti mpd alrimiv wex adantr simpr exval mpbi wal
|
|
leq oveq12 cla4v syl ) EUAABDKZLZUHZMAJWAAJNZLZFOPZKZLZFFEDUHZGUBZEWBWHAJ
|
|
WFEEEWFQQQWEFORAQWAWDAQBDEDFWIGUCZUDZUEZAJUFZUIZWJSZEEDWKUGZUJEWFOPZEWQAB
|
|
CEDFOPZOPWRWDTWNQQQEWFORWQWPSTEWSETWSEDFGUKULUMUKAQQQBEACNZWFOTRWQACUFZWP
|
|
AQQQVCVCBOWTRXAUNZHAQQQBWEWTFOTRWOXAWJXBAAQBWDWTWATWMWNXAAAQBDWTWLXAUOAAB
|
|
WDWTWNXAUNUPIUQUQQQQEWSOABNZWDVDPZWFRWQQQQDFORWLWJSQQQDFWEOXDRWLWJQDWAXCL
|
|
ZWEXDWLDXEVDPXDAXCWDABUFZWNURZQXEDTAQWAXCWMXFUIAQBDWLUSUTVAAQXCWDWAXDWMXF
|
|
XDXGUJVBVEVFVGVHVAVIVJAQVCZQUAWAAVKWMUIZVLZWCMQCMAJWEQCNZOPZKZLZXKOPZKLZW
|
|
HFOPZWBXPWCEWBWQXIVMWBXPVDPWCWHWCXJUCAJCWAWMVNVAVOQCXOFXQQQQXNXKORXHQMXMA
|
|
VPZAQJXLQQQWEXKORWOQCUFZSZUEZUIZXSSWJQQQXNXKWHOXKFVDPZFRYBXSXHQXMWGMYCXRY
|
|
AAQJXLWFYCXTQQQWEXKOYCFRWOXSYCQXKFXSWJURUJZVGVQVBYDVRVSVTVI $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y A $. $d y B $. $d x y R $. $d x y al $.
|
|
alimdv.1 $e |- ( R , A ) |= B $.
|
|
$( Deduction from Theorem 19.20 of [Margaris] p. 90. $)
|
|
alimdv $p |- ( R , ( ! \ x : al . A ) ) |= ( ! \ x : al . B ) $=
|
|
( vy tal kl kc kct ax-cb1 wctr ax4 wctl adantl kt hb ht ax-17 tv wv wl wc
|
|
syldan wal ax-hbl1 hbc hbct alrimi ) ABGDEHABCIZJZKDEULCULECABCECDECKFLZM
|
|
ZNECUMOZPFUEABEAGUAZULQUOAGUBZARSZRHUKAUFZARBCUNUCZUDARBEUPUOUQTAURRBUKUP
|
|
HQUSUTUQAURRSBHUPUSUQTAARBCUPUNUQUGUHUIUJ $.
|
|
$( [9-Oct-2014] $)
|
|
|
|
$( Deduction from Theorem 19.22 of [Margaris] p. 90. $)
|
|
eximdv $p |- ( R , ( ? \ x : al . A ) ) |= ( ? \ x : al . B ) $=
|
|
( vy tex kl kc kct ax-cb2 19.8a syl hb tv ax-cb1 wctl ax-17 ht wv ax-hbl1
|
|
kt wex wl hbc exlimd ) ABGCEHABDIZJZECKZDUIFABDDUJFLZMNAOBEAGPZECDUJFQRAG
|
|
UAZSAAOTZOBUHULHUCAUDZAOBDUKUEUMAUNOTBHULUOUMSAAOBDULUKUMUBUFUG $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y A $. $d x y al $.
|
|
alnex1.1 $e |- A : bool $.
|
|
$( Theorem 19.7 of [Margaris] p. 89. $)
|
|
alnex $p |- T. |= [ ( ! \ x : al . ( ~ A ) ) = ( ~ ( ? \ x : al . A ) ) ] $=
|
|
( vy tal tne kc kl tex tfal tim kbr wfal hb wnot ht kt ax-17 hbc ax4 mpbi
|
|
wc ke ax-cb1 notval a1i imp tv wal wl wv ax-hbl1 exlimd ex wex mpbir wtru
|
|
19.8a adantl con3d trul alrimi dedi ) FABGCHZIZHZGJABCIZHZHZVIKLMZVJVGVGV
|
|
IKABECVGKVGCKDNVECKLMZVGABVEOOGCPDUCZUAZVEVLUDMVGVEVGVNUEZCDUFUGUBUHAAOQZ
|
|
OBVFAEUIZFRAUJZAOBVEVMUKAEULZAVPOQZBFVQVRVSSAAOBVEVQVMVSUMTAOBKVQNVSSUNUO
|
|
VJVKUDMVGVOVIVPOJVHAUPZAOBCDUKZUCZUFUGUQABEVEVJVJVERCVICRVIABCDUSURUTVAVB
|
|
AOOBVIVQGRPWCVSAOOQBGVQPVSSAVPOBVHVQJRWAWBVSAVTBJVQWAVSSAAOBCVQDVSUMTTVCV
|
|
D $.
|
|
$( [10-Oct-2014] $)
|
|
|
|
$( Forward direction of ~ exnal . $)
|
|
exnal1 $p |- ( ? \ x : al . ( ~ A ) ) |= ( ~ ( ! \ x : al . A ) ) $=
|
|
( tex tne kc kl tal kt hb ht wex wnot wc wl kct notnot1 wtru adantl id ke
|
|
alimdv wal kbr alnex a1i mpbi syl con2d trul ) EABFCGZHZGZFIABCHGZGJUOUNA
|
|
KLZKEUMAMAKBULKKFCNDOZPOJUOQIABFULGZHZGZFUNGZABCURJCJURCDRSTUCUTVAUTUTUPK
|
|
IUSAUDAKBURKKFULNUQOPOZUAUTVAUBUEUTVBABULUQUFUGUHUIUJUK $.
|
|
$( [10-Oct-2014] $)
|
|
|
|
isfree.2 $e |- T. |= [ ( \ x : al . A y : al ) = A ] $.
|
|
$( Derive the metamath "is free" predicate in terms of the HOL "is free"
|
|
predicate. $)
|
|
isfree $p |- T. |= [ A ==> ( ! \ x : al . A ) ] $=
|
|
( kt tal kl kc id alrimi tv ke kbr ax-cb1 adantl ex ) GDHABDIZJZDGTABCDDD
|
|
EKFLSACMJDNOGFPQR $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
$(
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
Axioms of infinity and choice
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
$)
|
|
|
|
$c 1-1 $. $( One-to-one function $)
|
|
$c onto $. $( Onto function $)
|
|
$c @ $. $( Indefinite descriptor $)
|
|
|
|
$( One-to-one function. $)
|
|
tf11 $a term 1-1 $.
|
|
$( Onto function. $)
|
|
tfo $a term onto $.
|
|
$( Indefinite descriptor. $)
|
|
tat $a term @ $.
|
|
|
|
$( The type of the indefinite descriptor. $)
|
|
wat $a |- @ : ( ( al -> bool ) -> al ) $.
|
|
|
|
${
|
|
$d f p x y $.
|
|
$( Define a one-to-one function. $)
|
|
df-f11 $a |- T. |= [ 1-1 = \ f : ( al -> be ) . ( ! \ x : al . ( ! \ y : al .
|
|
[ [ ( f : ( al -> be ) x : al ) = ( f : ( al -> be ) y : al ) ] ==>
|
|
[ x : al = y : al ] ] ) ) ] $.
|
|
|
|
$( Define an onto function. $)
|
|
df-fo $a |- T. |= [ onto = \ f : ( al -> be ) . ( ! \ y : be . ( ? \ x : al .
|
|
[ y : be = ( f : ( al -> be ) x : al ) ] ) ) ] $.
|
|
|
|
$( Defining property of the indefinite descriptor: it selects an element
|
|
from any type. This is equivalent to global choice in ZF. $)
|
|
ax-ac $a |- T. |= ( ! \ p : ( al -> bool ) .
|
|
( ! \ x : al . [ ( p : ( al -> bool ) x : al ) ==>
|
|
( p : ( al -> bool ) ( @ p : ( al -> bool ) ) ) ] ) ) $.
|
|
$}
|
|
|
|
${
|
|
$d x A $. $d p x F $. $d p x al $.
|
|
ac.1 $e |- F : ( al -> bool ) $.
|
|
ac.2 $e |- A : al $.
|
|
$( Defining property of the indefinite descriptor: it selects an element
|
|
from any type. This is equivalent to global choice in ZF. $)
|
|
ac $p |- ( F A ) |= ( F ( @ F ) ) $=
|
|
( vx vp kc tat hb wc id tim kbr kt tal tv kl wim ceq2 ht wat ax-cb1 ax-ac
|
|
wal wv wov wl weqi ceq1 ceq12 oveq12 leq cla4v syl eqtypi oveq1 a1i mpd
|
|
ke ) CBHZVACICHZHZAJCVBDAJUAZAICAUBZDKKZVAAJCBDEKLZVAVCMNZVAVAVAVGUCOPAFC
|
|
AFQZHZVCMNZRZHZVHOPVDGPAFVDGQZVIHZVNIVNHZHZMNZRZHZRHVMAFGUDVDGVTCVMVDJPVS
|
|
AUEZAJFVRJJJVOVQMSAJVNVIVDGUFZAFUFZKZAJVNVPWBVDAIVNVEWBKZKZUGZUHZKDVDJVSV
|
|
LPVNCUTNZWAWHAJFVRVKWIWGJJJVOVQVJMWIVCSWDWFAJVIVNWICWBWCWIVDVNCWBDUILZUJA
|
|
JVPVBVNWICWBWEWJVDAVNCIWIVEWBWJTUKULZUMTUNUOAFVKBVHJVRVKWIWGWKUPEJJJVJVCV
|
|
AMVIBUTNZSAJCVIDWCKVFAJVIBCWLDWCWLAVIBWCEUILTUQUNUOURUS $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x F $. $d x al $.
|
|
dfex2.1 $e |- F : ( al -> bool ) $.
|
|
$( Alternative definition of the "there exists" quantifier. $)
|
|
dfex2 $p |- T. |= [ ( ? F ) = ( F ( @ F ) ) ] $=
|
|
( vx kt tex kc tat tv wv ac wtru adantl exlimdv2 hb ht wat wc ax4e ded )
|
|
EFBGZBHBGZGZADBEUCCBADIZGEUCAUDBCADJKLMNUCEUAAUBBCAOPAHBAQCRSLMT $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y A $. $d x al $.
|
|
exmid.1 $e |- A : bool $.
|
|
$( Diaconescu's theorem, which derives the law of the excluded middle from
|
|
the axiom of choice. $)
|
|
exmid $p |- T. |= [ A \/ ( ~ A ) ] $=
|
|
( vx vy tat hb tor kbr kc kt tne wor wc wnot wtru ke weqi id tfal wfal tv
|
|
kl ht wat wv wov wl orc oveq1 cl mpbir ac syl ax-17 ax-hbl1 hbc hbov mpbi
|
|
clf ceq2 tim simpr notval eqtru eqcomi a1i eqtri kct wct simpl simpld olc
|
|
ex leq adantl simprd ax-cb1 mpd ecase ) EFCFCUAZAGHZUBZIZAJAKAIZGHZFFUCZF
|
|
EWBFUDZFFCWAFFFVTAGLFCUEZBUFZUGZMZBFFFAWDGLBFFKANBMZUFZWBWCIZWCAGHZJJWBJI
|
|
ZWNJAGHZWPJJAOBUHZFFCWAWQJWIOFFFVTAJGVTJPHZLWHBWSFVTJWHOQRUIUJUKFJWBWJOUL
|
|
UMFFCDWAWOWCWIWKFFFVTAWCGVTWCPHZLWHBWTFVTWCWHWKQRUIFFFFCWCFDUAZAGJLWKFDUE
|
|
ZBFFWFUCCGXALXBUNZFWFFCWBXAEJWGWJXBFWFFUCCEXAWGXBUNZFFFCWAXAWIXBUOUPZFFCA
|
|
XABXBUNZUQXEUSURWCJWEKEFCKVTIZAGHZUBZIZIZAWCWEFFKXJNWFFEXIWGFFCXHFFFXGAGL
|
|
FFKVTNWHMZBUFZUGZMZMZBWMXKAGHZWCWKXIXJIZXQJJXISIZXRWQXSJWRFFCXHWQSXMTFFFX
|
|
GAJGVTSPHZLXLBFXGKSIZJXTXLFFVTSKXTNWHXTFVTSWHTQZRUTYAJPHXTYBFJYAJOYAJSSVA
|
|
HYAJJSSJSOTVBVMSTVCUKVDVEVFVGUIUJUKFSXIXNTULUMFFCDXHXQXJXMXOFFFXGAXKGVTXJ
|
|
PHZLXLBFFVTXJKYCNWHYCFVTXJWHXOQRUTUIFFFFCXKXAAGJLXPXBBXCFFFCXJXAKJNXOXBFW
|
|
FCKXANXBUNFWFFCXIXAEJWGXNXBXDFFFCXHXAXMXBUOUPZUPXFUQYDUSURVFWCXKVHZWDWEAS
|
|
VAHZWDYEYEASYEAVHZXJSTWCXJYGYGWCXKYEAWCXKWKXPVIZBVJZVKAYEWCXJPHWFFWBXIEAW
|
|
GWJFFCWAXHAWIFWAJXHAWIFJWAAOWAAVTAWHBVLVDVEXHAXGAXLBVLVDVGVNUTYHVOURXKXJS
|
|
VAHZYGYGWCXKYIVPXKYJPHYGYEYGYIVQXJXOVCVFURVRVMWDYFPHYEYHABVCVFUKAWDBWLVLU
|
|
MAWCWEAWDBWLUHZWKVOVSOVOAJWEYKOVOVS $.
|
|
$( [10-Oct-2014] $)
|
|
|
|
$( Rule of double negation. $)
|
|
notnot $p |- T. |= [ A = ( ~ ( ~ A ) ) ] $=
|
|
( tne kc notnot1 hb wnot tor kbr ax-cb2 exmid a1i simpr kct tfal wfal tim
|
|
wc id ke notval mpbi imp pm2.21 syl ecase dedi ) ACCADZDZABEZAUHUIABFFCAG
|
|
BRZBAUHHIUIUIAUJJZABKLUIAULBMUIUHNOAUIUHOUKPUIUHOQIZUIUIULSUIUMTIUIULUHUK
|
|
UALUBUCABUDUEUFUG $.
|
|
$( [10-Oct-2014] $)
|
|
|
|
$( Theorem 19.14 of [Margaris] p. 90. $)
|
|
exnal $p |- T. |= [ ( ? \ x : al . ( ~ A ) ) = ( ~ ( ! \ x : al . A ) ) ] $=
|
|
( hb tne tex kc kl tal kt wnot ht wex wc wl wal alnex ceq2 notnot 3eqtr4i
|
|
eqcomi leq ) EFFGABFCHZIZHZHZHFJABFUDHZIZHZHKUFFJABCIZHZHEEFUGLEEFUFLAEMZ
|
|
EGUEANAEBUDEEFCLDOZPOZOZOEEUGUJFKLUPEUJUGKUMEJUIAQZAEBUHEEFUDLUNOPOABUDUN
|
|
RUBSUFUOTEEULUJFKLUMEJUKUQAEBCDPZOUMEUKUIJKUQURAEBCUHKDCDTUCSSUA $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
$( The axiom of infinity: the set of "individuals" is not Dedekind-finite.
|
|
Using the axiom of choice, we can show that this is equivalent
|
|
to an embedding of the natural numbers in ` ind ` . $)
|
|
ax-inf $a |- T. |= ( ? \ f : ( ind -> ind ) .
|
|
[ ( 1-1 f : ( ind -> ind ) ) /\ ( ~ ( onto f : ( ind -> ind ) ) ) ] ) $.
|
|
|
|
$(
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
Rederive the Metamath axioms
|
|
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
|
|
$)
|
|
|
|
${
|
|
ax1.1 $e |- R : bool $.
|
|
ax1.2 $e |- S : bool $.
|
|
$( Axiom _Simp_. Axiom A1 of [Margaris] p. 49. $)
|
|
ax1 $p |- T. |= [ R ==> [ S ==> R ] ] $=
|
|
( kt tim kbr kct wtru simpr adantr ex ) EABAFGEAHZBAMBAEAICJDKLL $.
|
|
$( [9-Oct-2014] $)
|
|
|
|
ax2.3 $e |- T : bool $.
|
|
$( Axiom _Frege_. Axiom A2 of [Margaris] p. 49. $)
|
|
ax2 $p |- T. |=
|
|
[ [ R ==> [ S ==> T ] ] ==> [ [ R ==> S ] ==> [ R ==> T ] ] ] $=
|
|
( kt tim kbr kct hb wim wov wct simpr simpl simprd mpd simpld ex adantl
|
|
wtru ) GABCHIZHIZABHIZACHIZHIZUDGUGUDUEUFUDUEJZACUHAJZBCFUIABEUHAUDUEKKKA
|
|
UCHLDKKKBCHLEFMZMKKKABHLDEMNZDOZUIUDUEUHAUKDPZQRUIAUCUJULUIUDUEUMSRRTTUBU
|
|
AT $.
|
|
$( [9-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax3.1 $e |- R : bool $.
|
|
ax3.2 $e |- S : bool $.
|
|
$( Axiom _Transp_. Axiom A3 of [Margaris] p. 49. $)
|
|
ax3 $p |- T. |= [ [ ( ~ R ) ==> ( ~ S ) ] ==> [ S ==> R ] ] $=
|
|
( kt tne kc tim kbr kct hb wnot wc tor wim a1i ax-cb1 tfal imp ex wov wct
|
|
exmid simpr wfal id ke notval mpbi an32s pm2.21 syl ecase wtru adantl ) E
|
|
FAGZFBGZHIZBAHIZUREUSURBAAUPURBJZACKKFALCMZCAUPNIZUTURBKKKUPUQHOVAKKFBLDM
|
|
ZUAZDUBACUCPZUTAVBUTVEQCUDUTUPJRARURUPBURUPJZBRDUEUQBRHIZVFURUPUQVAVCURVD
|
|
UFSZUQVGUGIVFUQVFVHQBDUHPUISUJACUKULUMTUNUOT $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
axmp.1 $e |- S : bool $.
|
|
axmp.2 $e |- T. |= R $.
|
|
axmp.3 $e |- T. |= [ R ==> S ] $.
|
|
$( Rule of Modus Ponens. The postulated inference rule of propositional
|
|
calculus. See e.g. Rule 1 of [Hamilton] p. 73. $)
|
|
axmp $p |- T. |= S $=
|
|
( kt mpd ) FABCDEG $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y R $. $d y S $. $d x y al $.
|
|
ax5.1 $e |- R : bool $.
|
|
ax5.2 $e |- S : bool $.
|
|
$( Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. $)
|
|
ax5 $p |- T. |= [ ( ! \ x : al . [ R ==> S ] ) ==>
|
|
[ ( ! \ x : al . R ) ==> ( ! \ x : al . S ) ] ] $=
|
|
( vy kt tal tim kbr kl kc ax4 hb ht wl adantl ax-hbl1 hbc kct wal wim wov
|
|
wc ax-cb1 adantr mpd tv wv ax-17 hbct alrimi ex wtru ) HIABCDJKZLZMZIABCL
|
|
ZMZIABDLMZJKZURHVBURUTVAABGDURUTUAZVCCDFUTURCABCENZAOPZOIUQAUBZAOBUPOOOCD
|
|
JUCEFUDZQZUEZRURUTUPABUPVGNCUTVDUFZUGUHABURAGUIZUTHVIAGUJZVJAVEOBUQVKIHVF
|
|
VHVLAVEOPBIVKVFVLUKZAAOBUPVKVGVLSTAVEOBUSVKIHVFAOBCEQVLVMAAOBCVKEVLSTULUM
|
|
UNUORUN $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y R $. $d x y al $.
|
|
ax6.1 $e |- R : bool $.
|
|
$( Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113. $)
|
|
ax6 $p |- T. |= [ ( ~ ( ! \ x : al . R ) ) ==>
|
|
( ! \ x : al . ( ~ ( ! \ x : al . R ) ) ) ] $=
|
|
( vy tne tal kl kc hb wnot ht wal wl wc tv kt wv ax-17 hbc ax-hbl1 isfree
|
|
) ABEFGABCHZIZIJJFUDKAJLZJGUCAMZAJBCDNZOZOAJJBUDAEPZFQKUHAERZAJJLBFUIKUJS
|
|
AUEJBUCUIGQUFUGUJAUEJLBGUIUFUJSAAJBCUIDUJUATTUB $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d z R $. $d x y z al $.
|
|
ax7.1 $e |- R : bool $.
|
|
$( Axiom of Quantifier Commutation. Axiom scheme C6' in [Megill] p. 448
|
|
(p. 16 of the preprint). $)
|
|
ax7 $p |- T. |= [ ( ! \ x : al . ( ! \ y : al . R ) ) ==>
|
|
( ! \ y : al . ( ! \ x : al . R ) ) ] $=
|
|
( vz kt tal kl kc hb ht wal wl wc ax4 ax-17 ax-hbl1 hbc alrimi syl tv hbl
|
|
wv wtru adantl ex ) GHABHACDIZJZIZJZHACHABDIJZIJZUKGUMACFULUKABFDUKUKUIDA
|
|
BUIAKLZKHUHAMZAKCDENZOZPACDEPUAAUNKBUJAFUBZHGUOAKBUIUQNZAFUDZAUNKLZBHURUO
|
|
UTQAAKBUIURUQUTRSTAUNKCUJURHGUOUSUTAVACHURUOUTQZAAKCBUIURGUQUTAUNKCUHURHG
|
|
UOUPUTVBAAKCDUREUTRSUCSTUEUFUG $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x al $.
|
|
axgen.1 $e |- T. |= R $.
|
|
$( Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74. $)
|
|
axgen $p |- T. |= ( ! \ x : al . R ) $=
|
|
( kt alrimiv ) ABCEDF $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax8.1 $e |- A : al $.
|
|
ax8.2 $e |- B : al $.
|
|
ax8.3 $e |- C : al $.
|
|
$( Axiom of Equality. Axiom scheme C8' in [Megill] p. 448
|
|
(p. 16 of the preprint). Also appears as Axiom C7 of
|
|
[Monk2] p. 105. $)
|
|
ax8 $p |- T. |= [ [ A = B ] ==> [ [ A = C ] ==> [ B = C ] ] ] $=
|
|
( kt ke kbr tim kct weqi simpl eqcomi simpr eqtri ex wtru adantl ) HBCIJZ
|
|
BDIJZCDIJZKJZUAHUDUAUBUCACBDUAUBLZFABCUEEUAUBABCEFMZABDEGMZNOUAUBUFUGPQRS
|
|
TR $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d y A $. $d x y al $.
|
|
ax9.1 $e |- A : al $.
|
|
$( Axiom of Equality. Axiom scheme C8' in [Megill] p. 448
|
|
(p. 16 of the preprint). Also appears as Axiom C7 of
|
|
[Monk2] p. 105. $)
|
|
ax9 $p |- T. |= ( ~ ( ! \ x : al . ( ~ [ x : al = A ] ) ) ) $=
|
|
( vy tne tex tv kl kc tal kt wv hb ht wl ax-17 wtru wc wnot ke weqi 19.8a
|
|
kbr wex ax-hbl1 hbc eqid eqtru eqcomi ax-inst notnot1 syl wal alnex mpbir
|
|
id ceq2 ) FFGABABHZCUAUDZIZJZJZJZFKABFUTJZIZJZJLLVBVDABEVBVBCUTLABUTAUSCA
|
|
BMDUBZUCAANOZNBVAAEHZGLAUEZANBUTVHPZAEMZAVINOBGVJVKVMQAANBUTVJVHVMUFUGANB
|
|
LVJRVMQNVBUTVHVINGVAVKVLSZUHNLUTUTRUTUTUTVHUQUIUJUKVBVNULUMNNVGVCFLTVINKV
|
|
FAUNANBVENNFUTTVHSPSABUTVHUOURUP $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y z al $.
|
|
$( Axiom of Quantifier Substitution. Appears as Lemma L12 in
|
|
[Megill] p. 445 (p. 12 of the preprint). $)
|
|
ax10 $p |- T. |= [ ( ! \ x : al . [ x : al = y : al ] ) ==>
|
|
( ! \ y : al . [ y : al = x : al ] ) ] $=
|
|
( vz kt tal tv ke kbr kl kc wv weqi hb weq wov id oveq1 cla4v wl eqtri ht
|
|
ax4 eqcomi alrimiv wal wc cbv ceq2 a1i mpbir wtru adantl ex ) EFABABGZACG
|
|
ZHIZJZKZFACUPUOHIZJZKZUSEVBFADADGZUOHIZJZKZVBUSADVDUSAVCUPUOUSADLZABUQVCV
|
|
CUPHIAUOUPABLZACLZMZVGAANUOUPVCHUOVCHIZAOZVHVIVKAANUOVCHVLVHVGPQRSAUOUPUS
|
|
VHABUQVJUCUDUAUEVBVFHIUSANUBZNFURAUFZANBUQVJTUGVMNVAVEFEVNANCUTAUPUOVIVHM
|
|
ZTANCDUTVDVOAANUPUOVCHUPVCHIZVLVIVHVPAUPVCVIVGMQRUHUIUJUKULUMUN $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x A $. $d x y al $.
|
|
ax11.1 $e |- A : bool $.
|
|
$( Axiom of Variable Substitution. It
|
|
is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105,
|
|
from which it can be proved by cases. $)
|
|
ax11 $p |- T. |= [ [ x : al = y : al ] ==> [ ( ! \ y : al . A ) ==>
|
|
( ! \ x : al . [ [ x : al = y : al ] ==> A ] ) ] ] $=
|
|
( kt tv ke kbr tal kl kc tim kct hb wl wc id a1i ex ht wal eta ceq2 mpbir
|
|
wv wim weqi wov simpr ax-cb1 ax-cb2 simpl wct beta eqtri mpbi wtru adantl
|
|
alrimiv ax5 mpd syl ) FABGZACGZHIZJACDKZLZJABVFDMIZKZLZMIFVFNZVHVKVHVLVKVH
|
|
JABVGVDLZKZLZVKVHVOVHVHAOUAZOJVGAUBZAOCDEPZQZRVOVHHIZVHVSVPOVNVGJFVQAOBVM
|
|
AOVGVDVRABUFZQZPZAOBVGVRUCUDZSUEVOVOVKVPOJVJVQAOBVIOOOVFDMUGAVDVEWAACUFUH
|
|
ZEUIZPQZVOVPOJVNVQWCQZRVOVKMIZVOWHFJABVMVIMIZKLWIOOOVOVKMUGVOVFVHNZVHVOWK
|
|
VFVHWEVSUJZVTWKVHWKWLUKWDSUEULWGUIABWJFFVMVIVMFVIVMVFDVMDVMVFNZVMVFWBWEUM
|
|
OVMVGVELZDWMWBAOVDVEVGWMVRWAVMVFWBWEUJUDWNDHIWMVMVFWBWEUNAOCDEUOSUPUQTURU
|
|
STUTABVMVIWBWFVAVBSVBVCFVFURWEUNUSTT $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d p x z $. $d p y z $. $d p z al $.
|
|
$( Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill]
|
|
p. 448 (p. 16 of the preprint). $)
|
|
ax12 $p |- T. |=
|
|
[ ( ~ ( ! \ z : al . [ z : al = x : al ] ) ) ==>
|
|
[ ( ~ ( ! \ z : al . [ z : al = y : al ] ) ) ==>
|
|
[ [ x : al = y : al ] ==> ( ! \ z : al . [ x : al = y : al ] ) ] ] ] $=
|
|
( vp kt tne tal tv ke kbr kl kc tim wv weqi hb wnot wl wc ax-17 isfree ht
|
|
wal adantr ex ) FGHADADIZABIZJKZLZMZMZGHADUGACIZJKZLZMZMZUHUMJKZHADURLMNK
|
|
ZNKZFULUTFUQUSFUQUSADEURAUHUMABOZACOZPZAQDURAEIVCAEOUAUBQQGUPRAQUCZQHUOAU
|
|
DZAQDUNAUGUMADOZVBPSTTUEUFQQGUKRVDQHUJVEAQDUIAUGUHVFVAPSTTUEUF $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax13.1 $e |- A : al $.
|
|
ax13.2 $e |- B : al $.
|
|
ax13.3 $e |- C : ( al -> bool ) $.
|
|
$( Axiom of Equality. Axiom scheme C12' in [Megill] p. 448
|
|
(p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of
|
|
system S2 of [Tarski] p. 77. $)
|
|
ax13 $p |- T. |= [ [ A = B ] ==> [ ( C A ) ==> ( C B ) ] ] $=
|
|
( kt ke kbr kc tim kct wtru weqi wct hb wc simpr ex ceq2 adantr mpbi ) HB
|
|
CIJZDBKZDCKZLJHUDMZUEUFUEUFUGUEMUGUEHUDNABCEFOZPAQDBGERZSUGUEUEUFIJAQBCDU
|
|
GGEHUDNUHSUAUIUBUCTT $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
ax14.1 $e |- A : ( al -> bool ) $.
|
|
ax14.2 $e |- B : ( al -> bool ) $.
|
|
ax14.3 $e |- C : al $.
|
|
$( Axiom of Equality. Axiom scheme C12' in [Megill] p. 448
|
|
(p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of
|
|
system S2 of [Tarski] p. 77. $)
|
|
ax14 $p |- T. |= [ [ A = B ] ==> [ ( A C ) ==> ( B C ) ] ] $=
|
|
( kt ke kbr kc tim kct wtru hb ht weqi wct simpr ex wc ceq1 adantr mpbi )
|
|
HBCIJZBDKZCDKZLJHUEMZUFUGUFUGUHUFMUHUFHUENAOPBCEFQZRAOBDEGUAZSUHUFUFUGIJA
|
|
ODBUHCEGHUENUISUBUJUCUDTT $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y A $. $d x y al $.
|
|
ax17.1 $e |- A : bool $.
|
|
$( Axiom to quantify a variable over a formula in which it does not occur.
|
|
Axiom C5 in [Megill] p. 444 (p. 11 of the preprint). Also appears as
|
|
Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of
|
|
[Monk2] p. 113. $)
|
|
ax17 $p |- T. |= [ A ==> ( ! \ x : al . A ) ] $=
|
|
( vy hb tv wv ax-17 isfree ) ABECDAFBCAEGDAEHIJ $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y A $. $d x y B $. $d x y al $.
|
|
axext.1 $e |- A : ( al -> bool ) $.
|
|
axext.2 $e |- B : ( al -> bool ) $.
|
|
$( Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It
|
|
states that two sets are identical if they contain the same elements.
|
|
Axiom Ext of [BellMachover] p. 461. $)
|
|
axext $p |- T. |=
|
|
[ ( ! \ x : al . [ ( A x : al ) = ( B x : al ) ] ) ==> [ A = B ] ] $=
|
|
( vy kt tal tv kc ke kbr kl hb ht wv wc wl eta weqi ax4 wal ax-17 ax-hbl1
|
|
hbc leqf ax-cb1 a1i 3eqtr3i wtru adantl ex ) HIABCABJZKZDUNKZLMZNZKZCDLMZ
|
|
USHUTAOPZABUONZABUPNZUSCDAOBUOAOCUNEABQZRZSAOBGUOUPUSVEABUQOUOUPVEAODUNFV
|
|
DRUAZUBAVAOBURAGJZIHAUCZAOBUQVFSAGQZAVAOPBIVGVHVIUDAAOBUQVGVFVIUEUFUGZVBC
|
|
LMUSVBVCLMUSVJUHZAOBCETUIVCDLMUSVKAOBDFTUIUJUKULUM $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d f A $. $d f y B $. $d f y al $. $d f x y be $. $d f y z be $.
|
|
axrep.1 $e |- A : bool $.
|
|
axrep.2 $e |- B : ( al -> bool ) $.
|
|
$( Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory.
|
|
Axiom 5 of [TakeutiZaring] p. 19. $)
|
|
axrep $p |- T. |= [ ( ! \ x : al . ( ? \ y : be . ( ! \ z : be .
|
|
[ ( ! \ y : be . A ) ==> [ z : be = y : be ] ] ) ) ) ==>
|
|
( ? \ y : ( be -> bool ) . ( ! \ z : be . [ ( y : ( be -> bool ) z : be ) =
|
|
( ? \ x : al . [ ( B x : al ) /\ ( ! \ y : be . A ) ] ) ] ) ) ] $=
|
|
( kt tal tex kl kc ke kbr hb ht wl wc vf hga tim tan wal wex wim weqi wov
|
|
tv wv wtru wan eqid alrimiv a1i ax-cb1 weq id ceq1 beta eqtri oveq1 ax-17
|
|
ax-hbl1 hbov leqf ceq2 hbl1 hbc hbl clf mpbir ax4e syl adantl ex ) JKACLB
|
|
DKBEKBDFMZNZBEUJZBDUJZOPZUCPZMZNZMZNZMZNZLBQRZDKBEWJDUJZVTNZLACGACUJZNZVS
|
|
UDPZMZNZOPZMZNZMZNZWIJXBWIXABEWQMZNZXBKBEWQWQOPZMZNZXDWIXGWIAQRZQKWHAUEAQ
|
|
CWGWJQLWFBUFZBQDWEWJQKWDBUEZBQEWCQQQVSWBUCUGWJQKVRXJBQDFHSZTZBVTWABEUKZBD
|
|
UKUHUISTSTSTBEXEJQWQJULXHQLWPAUFZAQCWOQQQWNVSUDUMAQGWMIACUKTZXLUIZSZTZUNU
|
|
OUPZXDXGOPWIXGWIXSUQWJQDUAWTXGXCWJQKWSXJBQEWRQWLWQBQWKVTWJDUKZXMTZXRUHZSZ
|
|
TZBQEWQXRSZWJQWSXFKWKXCOPZXJYCBQEUAWRXEYFYBQQQWLWQWQOYFQURZYAXRQWLXCVTNZW
|
|
QYFYABQVTWKYFXCXTXMYFWJWKXCXTYEUHZUSUTYHWQOPYFYIBQEWQXRVAUPVBVCBWJWJQEWKB
|
|
UAUJZXCOJWJURXTBUAUKZYEBQQQRRZEOYJYGYKVDBWJEWKYJXTYKVDBBQEWQYJXRYKVEVFVGV
|
|
HWJWJQDXFWJUAUJZKJXJBQEXEQWQWQXRXRUHZSWJUAUKZWJWJQRZDKYMXJYOVDZWJBQDEXEYM
|
|
JYNYOWJQQQDWQYMWQOJYGXRYOXRWJUBUBQRRDOYMUBURYOVDWJXHQDWPYMLJXNXQYOWJYPDLY
|
|
MXIYOVDWJAQDCWOYMJXPYOWJQQQDWNYMVSUDJUMXOYOXLWJYLDUDYMUMYOVDWJQDWNYMXOYOV
|
|
DWJWJQDVRYMKJXJXKYOYQWJBQDFYMJHYOULVIVJVFVKVJZYRVFVKVJWJBQDEWQYMJXRYOYRVK
|
|
VLUPVMWJXCXAWJQDWTYDSYEVNVOULVPVQ $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y $. $d y A $. $d p y z al $.
|
|
axpow.1 $e |- A : ( al -> bool ) $.
|
|
$( Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. $)
|
|
axpow $p |- T. |=
|
|
( ? \ y : ( ( al -> bool ) -> bool ) . ( ! \ z : ( al -> bool ) .
|
|
[ ( ! \ x : al . [ ( z : ( al -> bool ) x : al ) ==> ( A x : al ) ] ) ==>
|
|
( y : ( ( al -> bool ) -> bool ) z : ( al -> bool ) ) ] ) ) $=
|
|
( vp kt tal hb tv kc tim kbr kl wtru wim wv wc wl ht tex wal wov simpl ex
|
|
alrimiv ke weqi id ceq1 eqid cl a1i eqtri oveq2 leq ceq2 cla4ev syl ) HIA
|
|
JUAZDIABVADKZABKZLZEVCLZMNZOZLZHMNZOZLZUBVAJUAZCIVADVHVLCKZVBLZMNZOZLZOLV
|
|
ADVIHHVHHHVHPVAJIVGAUCAJBVFJJJVDVEMQAJVBVCVADRZABRZSAJEVCFVSSUDTSZUEUFUGV
|
|
LCVQVAGHOZVKVLJIVPVAUCZVAJDVOJJJVHVNMQVTVAJVMVBVLCRZVRSZUDZTZSVAJGHPTZVLJ
|
|
VPVJIVMWAUHNZWBWFVAJDVOVIWHWEJJJVHVNMWHHQVTWDJVNWAVBLZHWHWDVAJVBVMWHWAWCV
|
|
RWHVLVMWAWCWGUIZUJUKWIHUHNWHWJVAJGHHVBPVRJHVAGKZVBUHNVAWKVBVAGRVRUIPULUMU
|
|
NUOUPUQURUSUT $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
${
|
|
$d x y $. $d p y z $. $d y A $. $d y z al $. $d p y z al $.
|
|
axun.1 $e |- A : ( ( al -> bool ) -> bool ) $.
|
|
$( Axiom of Union. An axiom of Zermelo-Fraenkel set theory. $)
|
|
axun $p |- T. |=
|
|
( ? \ y : ( al -> bool ) . ( ! \ z : al . [ ( ? \ x : ( al -> bool ) .
|
|
[ ( x : ( al -> bool ) z : al ) /\ ( A x : ( al -> bool ) ) ] ) ==>
|
|
( y : ( al -> bool ) z : al ) ] ) ) $=
|
|
( vp kt tal tex hb tv kc kbr kl tim wtru wv wc wl tan kct wex wan wov wct
|
|
ht trud ex alrimiv wal wim ke weqi id ceq1 a17i eqtri leq ceq2 cla4ev syl
|
|
oveq2 ) HIADJAKUGZBVDBLZADLZMZEVEMZUANZOZMZHPNZOZMZJVDCIADVKVDCLZVFMZPNZO
|
|
ZMZOMADVLHHVKHHVKUBHVKQVDKUGKJVJVDUCVDKBVIKKKVGVHUAUDAKVEVFVDBRZADRZSVDKE
|
|
VEFVTSUETSZUFUHUIUJVDCVSAGHOZVNVDKIVRAUKZAKDVQKKKVKVPPULWBAKVOVFVDCRZWASZ
|
|
UEZTZSAKGHQTZVDKVRVMIVOWCUMNZWDWHAKDVQVLWJWGKKKVKVPPWJHULWBWFKVPWCVFMHWJW
|
|
FAKVFVOWJWCWEWAWJVDVOWCWEWIUNZUOUPAKGHVFWJQWAWKUQURVCUSUTVAVB $.
|
|
$( [10-Oct-2014] $)
|
|
$}
|
|
|
|
$( ax-reg, ax-inf, and ax-ac are "true" in the broad strokes in HOL, but
|
|
the set.mm versions of these axioms are not well-typed and so cannot be
|
|
expressed. $)
|
|
|
|
$( $t
|
|
|
|
/* The '$ t' (no space between '$' and 't') token indicates the beginning
|
|
of the typesetting definition section, embedded in a Metamath
|
|
comment. There may only be one per source file, and the typesetting
|
|
section ends with the end of the Metamath comment. The typesetting
|
|
section uses C-style comment delimiters. Todo: Allow multiple
|
|
typesetting comments */
|
|
|
|
/* These are the LaTeX and HTML definitions in the order the tokens are
|
|
introduced in $c or $v statements. See HELP TEX or HELP HTML in the
|
|
Metamath program. */
|
|
|
|
/******* Web page format settings *******/
|
|
|
|
/* Page title, home page link */
|
|
htmltitle "Higher-Order Logic Explorer";
|
|
htmlhome '<A HREF="mmhol.html"><FONT SIZE=-2 FACE=sans-serif>' +
|
|
'<IMG SRC="hol.gif" BORDER=0 ALT=' +
|
|
'"Home" HEIGHT=32 WIDTH=32 ALIGN=MIDDLE>' +
|
|
'Home</FONT></A>';
|
|
/* Optional file where bibliographic references are kept */
|
|
/* If specified, e.g. "mmset.html", Metamath will hyperlink all strings of the
|
|
form "[rrr]" (where "rrr" has no whitespace) to "mmset.html#rrr" */
|
|
/* A warning will be given if the file "mmset.html" with the bibliographical
|
|
references is not present. It is read in order to check correctness of
|
|
the references. */
|
|
htmlbibliography "mmhol.html";
|
|
|
|
/* Variable color key at the bottom of each proof table */
|
|
htmlvarcolor '<FONT COLOR="#0000FF">type</FONT> '
|
|
+ '<FONT COLOR="#FF0000">var</FONT> '
|
|
+ '<FONT COLOR="#CC33CC">term</FONT>';
|
|
|
|
/* GIF and Unicode HTML directories - these are used for the GIF version to
|
|
crosslink to the Unicode version and vice-versa */
|
|
htmldir "../holgif/";
|
|
althtmldir "../holuni/";
|
|
|
|
|
|
/******* Symbol definitions *******/
|
|
|
|
htmldef "wff" as '<FONT COLOR="#808080">wff </FONT>';
|
|
althtmldef "wff" as '<FONT COLOR="#808080">wff </FONT>';
|
|
latexdef "wff" as "{\rm wff}";
|
|
htmldef "var" as '<FONT COLOR="#808080">var </FONT>';
|
|
althtmldef "var" as '<FONT COLOR="#808080">var </FONT>';
|
|
latexdef "var" as "{\rm var}";
|
|
htmldef "type" as '<FONT COLOR="#808080">type </FONT>';
|
|
althtmldef "type" as '<FONT COLOR="#808080">type </FONT>';
|
|
latexdef "type" as "{\rm type}";
|
|
htmldef "term" as '<FONT COLOR="#808080">term </FONT>';
|
|
althtmldef "term" as '<FONT COLOR="#808080">term </FONT>';
|
|
latexdef "term" as "{\rm term}";
|
|
htmldef "|-" as
|
|
"<IMG SRC='_vdash.gif' WIDTH=10 HEIGHT=19 ALT='|-' ALIGN=TOP> ";
|
|
althtmldef "|-" as
|
|
'<FONT COLOR="#808080" FACE=sans-serif>⊢ </FONT>'; /* ⊢ */
|
|
/* Without sans-serif, way too big in FF3 */
|
|
latexdef "|-" as "\vdash";
|
|
htmldef ":" as "<IMG SRC='colon.gif' WIDTH=4 HEIGHT=19 ALT=':' ALIGN=TOP>";
|
|
althtmldef ":" as ':';
|
|
latexdef ":" as ":";
|
|
htmldef "." as " ";
|
|
althtmldef "." as ' ';
|
|
latexdef "." as "\,";
|
|
htmldef "|=" as
|
|
" <IMG SRC='models.gif' WIDTH=12 HEIGHT=19 ALT='|=' ALIGN=TOP> ";
|
|
althtmldef "|=" as "⊧"; latexdef "|=" as "\models";
|
|
htmldef "bool" as
|
|
"<IMG SRC='hexstar.gif' WIDTH=11 HEIGHT=19 ALT='*' ALIGN=TOP>";
|
|
althtmldef "bool" as '∗';
|
|
latexdef "bool" as "\ast";
|
|
htmldef "ind" as
|
|
"<IMG SRC='iota.gif' WIDTH=6 HEIGHT=19 ALT='iota' ALIGN=TOP>";
|
|
althtmldef "ind" as '<FONT SIZE="+1">ι</FONT>';
|
|
latexdef "ind" as "\iota";
|
|
htmldef "->" as
|
|
" <IMG SRC='to.gif' WIDTH=15 HEIGHT=19 ALT='->' ALIGN=TOP> ";
|
|
althtmldef "->" as ' → ';
|
|
latexdef "->" as "\rightarrow";
|
|
htmldef "(" as "<IMG SRC='lp.gif' WIDTH=5 HEIGHT=19 ALT='(' ALIGN=TOP>";
|
|
althtmldef "(" as "(";
|
|
latexdef "(" as "(";
|
|
htmldef ")" as "<IMG SRC='rp.gif' WIDTH=5 HEIGHT=19 ALT=')' ALIGN=TOP>";
|
|
althtmldef ")" as ")";
|
|
latexdef ")" as ")";
|
|
htmldef "," as "<IMG SRC='comma.gif' WIDTH=4 HEIGHT=19 ALT=',' ALIGN=TOP> ";
|
|
althtmldef "," as ', ';
|
|
latexdef "," as ",";
|
|
htmldef "\" as "<IMG SRC='lambda.gif' WIDTH=9 HEIGHT=19 ALT='\' ALIGN=TOP>";
|
|
althtmldef "\" as '<I>λ</I>';
|
|
latexdef "\" as "\lambda";
|
|
htmldef "=" as " <IMG SRC='eq.gif' WIDTH=12 HEIGHT=19 ALT='=' ALIGN=TOP> ";
|
|
althtmldef "=" as ' = '; /* = */
|
|
latexdef "=" as "=";
|
|
htmldef "T." as "<IMG SRC='top.gif' WIDTH=11 HEIGHT=19 ALT='T.' ALIGN=TOP>";
|
|
althtmldef "T." as '⊤';
|
|
latexdef "T." as "\top";
|
|
htmldef "[" as "<IMG SRC='lbrack.gif' WIDTH=5 HEIGHT=19 ALT='[' ALIGN=TOP>";
|
|
althtmldef "[" as '['; /* [ */
|
|
latexdef "[" as "[";
|
|
htmldef "]" as "<IMG SRC='rbrack.gif' WIDTH=5 HEIGHT=19 ALT=']' ALIGN=TOP>";
|
|
althtmldef "]" as ']'; /* ] */
|
|
latexdef "]" as "]";
|
|
htmldef "al" as
|
|
"<IMG SRC='_alpha.gif' WIDTH=12 HEIGHT=19 ALT='al' ALIGN=TOP>";
|
|
althtmldef "al" as '<FONT COLOR="#0000FF"><I>α</I></FONT>';
|
|
latexdef "al" as "\alpha";
|
|
htmldef "be" as
|
|
"<IMG SRC='_beta.gif' WIDTH=11 HEIGHT=19 ALT='be' ALIGN=TOP>";
|
|
althtmldef "be" as '<FONT COLOR="#0000FF"><I>β</I></FONT>';
|
|
latexdef "be" as "\beta";
|
|
htmldef "ga" as
|
|
"<IMG SRC='_gamma.gif' WIDTH=11 HEIGHT=19 ALT='ga' ALIGN=TOP>";
|
|
althtmldef "ga" as '<FONT COLOR="#0000FF"><I>γ</I></FONT>';
|
|
latexdef "ga" as "\gamma";
|
|
htmldef "de" as
|
|
"<IMG SRC='_delta.gif' WIDTH=9 HEIGHT=19 ALT='de' ALIGN=TOP>";
|
|
althtmldef "de" as '<FONT COLOR="#0000FF"><I>δ</I></FONT>';
|
|
latexdef "de" as "\delta";
|
|
htmldef "x" as "<IMG SRC='_x.gif' WIDTH=10 HEIGHT=19 ALT='x' ALIGN=TOP>";
|
|
althtmldef "x" as '<I><FONT COLOR="#FF0000">x</FONT></I>';
|
|
latexdef "x" as "x";
|
|
htmldef "y" as "<IMG SRC='_y.gif' WIDTH=9 HEIGHT=19 ALT='y' ALIGN=TOP>";
|
|
althtmldef "y" as '<I><FONT COLOR="#FF0000">y</FONT></I>';
|
|
latexdef "y" as "y";
|
|
htmldef "z" as "<IMG SRC='_z.gif' WIDTH=9 HEIGHT=19 ALT='z' ALIGN=TOP>";
|
|
althtmldef "z" as '<I><FONT COLOR="#FF0000">z</FONT></I>';
|
|
latexdef "z" as "z";
|
|
htmldef "f" as "<IMG SRC='_f.gif' WIDTH=9 HEIGHT=19 ALT='f' ALIGN=TOP>";
|
|
althtmldef "f" as '<I><FONT COLOR="#FF0000">f</FONT></I>';
|
|
latexdef "f" as "f";
|
|
htmldef "g" as "<IMG SRC='_g.gif' WIDTH=9 HEIGHT=19 ALT='g' ALIGN=TOP>";
|
|
althtmldef "g" as '<I><FONT COLOR="#FF0000">g</FONT></I>';
|
|
latexdef "g" as "g";
|
|
htmldef "p" as "<IMG SRC='_p.gif' WIDTH=10 HEIGHT=19 ALT='p' ALIGN=TOP>";
|
|
althtmldef "p" as '<I><FONT COLOR="#FF0000">p</FONT></I>';
|
|
latexdef "p" as "p";
|
|
htmldef "q" as "<IMG SRC='_q.gif' WIDTH=8 HEIGHT=19 ALT='q' ALIGN=TOP>";
|
|
althtmldef "q" as '<I><FONT COLOR="#FF0000">q</FONT></I>';
|
|
latexdef "q" as "q";
|
|
htmldef "A" as "<IMG SRC='_ca.gif' WIDTH=11 HEIGHT=19 ALT='A' ALIGN=TOP>";
|
|
althtmldef "A" as '<I><FONT COLOR="#CC33CC">A</FONT></I>';
|
|
latexdef "A" as "A";
|
|
htmldef "B" as "<IMG SRC='_cb.gif' WIDTH=12 HEIGHT=19 ALT='B' ALIGN=TOP>";
|
|
althtmldef "B" as '<I><FONT COLOR="#CC33CC">B</FONT></I>';
|
|
latexdef "B" as "B";
|
|
htmldef "C" as "<IMG SRC='_cc.gif' WIDTH=12 HEIGHT=19 ALT='C' ALIGN=TOP>";
|
|
althtmldef "C" as '<I><FONT COLOR="#CC33CC">C</FONT></I>';
|
|
latexdef "C" as "C";
|
|
htmldef "F" as "<IMG SRC='_cf.gif' WIDTH=13 HEIGHT=19 ALT='F' ALIGN=TOP>";
|
|
althtmldef "F" as '<I><FONT COLOR="#CC33CC">F</FONT></I>';
|
|
latexdef "F" as "F";
|
|
htmldef "R" as "<IMG SRC='_cr.gif' WIDTH=12 HEIGHT=19 ALT='R' ALIGN=TOP>";
|
|
althtmldef "R" as '<I><FONT COLOR="#CC33CC">R</FONT></I>';
|
|
latexdef "R" as "R";
|
|
htmldef "S" as "<IMG SRC='_cs.gif' WIDTH=11 HEIGHT=19 ALT='S' ALIGN=TOP>";
|
|
althtmldef "S" as '<I><FONT COLOR="#CC33CC">S</FONT></I>';
|
|
latexdef "S" as "S";
|
|
htmldef "T" as "<IMG SRC='_ct.gif' WIDTH=12 HEIGHT=19 ALT='T' ALIGN=TOP>";
|
|
althtmldef "T" as '<I><FONT COLOR="#CC33CC">T</FONT></I>';
|
|
latexdef "T" as "T";
|
|
htmldef "F." as "<IMG SRC='perp.gif' WIDTH=11 HEIGHT=19 ALT='F.' ALIGN=TOP>";
|
|
althtmldef "F." as '⊥';
|
|
latexdef "F." as "\bot";
|
|
htmldef "/\" as
|
|
" <IMG SRC='wedge.gif' WIDTH=11 HEIGHT=19 ALT='/\' ALIGN=TOP> ";
|
|
althtmldef "/\" as ' <FONT FACE=sans-serif>∧</FONT> ';
|
|
/* althtmldef "/\" as ' <FONT FACE=sans-serif>⋀</FONT> '; */
|
|
/* was ∧ which is circle in Mozilla on WinXP Pro (but not Home) */
|
|
/* Changed back 6-Mar-2012 NM */
|
|
latexdef "/\" as "\wedge";
|
|
htmldef "~" as "<IMG SRC='lnot.gif' WIDTH=10 HEIGHT=19 ALT='~' ALIGN=TOP> ";
|
|
althtmldef "~" as '¬ ';
|
|
latexdef "~" as "\lnot";
|
|
htmldef "==>" as
|
|
" <IMG SRC='bigto.gif' WIDTH=15 HEIGHT=19 ALT='==>' ALIGN=TOP> ";
|
|
althtmldef "==>" as ' ⇒ ';
|
|
latexdef "==>" as "\Rightarrow";
|
|
htmldef "!" as "<IMG SRC='forall.gif' WIDTH=10 HEIGHT=19 ALT='A.' ALIGN=TOP>";
|
|
althtmldef "!" as '<FONT FACE=sans-serif>∀</FONT>'; /* ∀ */
|
|
latexdef "!" as "\forall";
|
|
htmldef "?" as "<IMG SRC='exists.gif' WIDTH=9 HEIGHT=19 ALT='E.' ALIGN=TOP>";
|
|
althtmldef "?" as '<FONT FACE=sans-serif>∃</FONT>'; /* ∃ */
|
|
/* Without sans-serif, bad in Opera and way too big in FF3 */
|
|
latexdef "?" as "\exists";
|
|
htmldef "\/" as " <IMG SRC='vee.gif' WIDTH=11 HEIGHT=19 ALT='\/' ALIGN=TOP> ";
|
|
althtmldef "\/" as ' <FONT FACE=sans-serif> ∨</FONT> ' ;
|
|
/* althtmldef "\/" as ' <FONT FACE=sans-serif>⋁</FONT> ' ; */
|
|
/* was ∨ - changed to match font of ∧ replacement */
|
|
/* Changed back 6-Mar-2012 NM */
|
|
latexdef "\/" as "\vee";
|
|
htmldef "?!" as "<IMG SRC='_e1.gif' WIDTH=12 HEIGHT=19 ALT='E!' ALIGN=TOP>";
|
|
althtmldef "?!" as '<FONT FACE=sans-serif>∃!</FONT>';
|
|
latexdef "?!" as "\exists{!}";
|
|
htmldef "typedef" as "typedef ";
|
|
althtmldef "typedef" as 'typedef ';
|
|
latexdef "typedef" as "\mbox{typedef }";
|
|
htmldef "1-1" as "1-1 ";
|
|
althtmldef "1-1" as '1-1 ';
|
|
latexdef "1-1" as "\mbox{1-1 }";
|
|
htmldef "onto" as "onto ";
|
|
althtmldef "onto" as 'onto ';
|
|
latexdef "onto" as "\mbox{onto }";
|
|
htmldef "@" as
|
|
"<IMG SRC='varepsilon.gif' WIDTH=8 HEIGHT=19 ALT='@' ALIGN=TOP>";
|
|
althtmldef "@" as 'ε';
|
|
latexdef "@" as "\varepsilon";
|
|
|
|
/* End of typesetting definition section */
|
|
$)
|
|
|
|
$( 456789012345 (79-character line to adjust text window width) 567890123456 $)
|
|
|
|
|