Compare commits

...

38 Commits

Author SHA1 Message Date
Greg Shuflin
575c915136 More representations 2024-02-03 00:38:10 -08:00
Greg Shuflin
e47bcbe760 More representation work 2024-02-02 02:39:50 -08:00
Greg Shuflin
e6e1d14eee Some more work 2024-02-01 14:06:06 -08:00
Greg Shuflin
a189f34c37 ebnf repeated 2024-01-31 15:43:43 -08:00
Greg Shuflin
9c2228dbff more reprs 2024-01-31 03:13:46 -08:00
Greg Shuflin
4818b23c3b Representation always exists 2024-01-31 02:23:49 -08:00
Greg Shuflin
0829b16fc9 Parser representations 2024-01-31 02:15:50 -08:00
Greg Shuflin
9ed860383e test 2024-01-31 00:58:05 -08:00
Greg Shuflin
be501f540e EBNF StringTerminal 2024-01-31 00:47:45 -08:00
Greg Shuflin
a55a806a60 EBNF: nonterminals 2024-01-31 00:31:16 -08:00
Greg Shuflin
698e05081a starting ebnf representation 2024-01-31 00:24:18 -08:00
Greg Shuflin
4e813a7efd more parser annotation 2024-01-30 00:15:00 -08:00
Greg Shuflin
b042e06084 Add Representation 2024-01-30 00:05:20 -08:00
Greg Shuflin
5141cdadd9 Generalized to AnnotatedParser 2024-01-30 00:03:02 -08:00
Greg Shuflin
2909cdf296 named parser 2024-01-29 20:14:53 -08:00
Greg Shuflin
33899ae66e Fix parsing 2024-01-29 19:37:18 -08:00
Greg Shuflin
a9d08a9213 noodling on sexp 2024-01-29 17:28:01 -08:00
Greg Shuflin
cdbbb8214f surrounded by 2024-01-29 10:09:44 -08:00
Greg Shuflin
d8a68bcbf3 Sexp parser 2024-01-29 04:08:32 -08:00
Greg Shuflin
51d7380761 Sexp parser test 2024-01-29 03:55:24 -08:00
Greg Shuflin
ea6a513572 more choice impls 2024-01-29 02:57:09 -08:00
Greg Shuflin
05c9ada7c6 Work 2024-01-28 12:03:30 -08:00
Greg Shuflin
bb06350404 More combinators, s expression test 2024-01-28 11:54:58 -08:00
Greg Shuflin
56042dbbe2 Use trait in choice 2024-01-28 02:53:13 -08:00
Greg Shuflin
3669d5d2cc Add test module 2024-01-28 02:36:21 -08:00
Greg Shuflin
918e3d042b Parser traits in submodule 2024-01-27 16:16:54 -08:00
Greg Shuflin
afae0d0840 Parser Extension 2024-01-27 16:00:29 -08:00
Greg Shuflin
2ad7707349 Repeat test 2024-01-27 02:20:58 -08:00
Greg Shuflin
0e26ef1ea6 Repeated structure 2024-01-26 22:11:55 -08:00
Greg Shuflin
9efd9d78d1 Pass input out 2024-01-26 22:01:21 -08:00
Greg Shuflin
e697b8ed21 Sequence trait 2024-01-26 09:39:46 -08:00
Greg Shuflin
477fc50b65 Add justfile 2024-01-26 09:22:52 -08:00
Greg Shuflin
f2ff509748 Optional 2024-01-26 09:22:19 -08:00
Greg Shuflin
bffaca4d68 combinators 2024-01-26 00:23:21 -08:00
Greg Shuflin
97d35df687 repeated combinator 2024-01-26 00:20:57 -08:00
Greg Shuflin
41829019b6 Map 2024-01-26 00:13:05 -08:00
Greg Shuflin
cbb30d3e9f Modules 2024-01-26 00:07:52 -08:00
Greg Shuflin
8f00b77c2c Rewrite 2024-01-25 15:38:29 -08:00
13 changed files with 1065 additions and 31 deletions

6
justfile Normal file
View File

@ -0,0 +1,6 @@
_default:
just --list
test *args:
cargo nextest run {{args}}

55
src/annotated.rs Normal file
View File

@ -0,0 +1,55 @@
use std::marker::PhantomData;
use crate::{representation::Representation, ParseResult, Parser};
pub struct AnnotatedParser<P, I, O, E>
where
P: Parser<I, O, E>,
{
inner: P,
name: Option<String>,
repr: Representation,
phantom: PhantomData<(I, O, E)>,
}
impl<P, I, O, E> Parser<I, O, E> for AnnotatedParser<P, I, O, E>
where
P: Parser<I, O, E>,
{
fn parse(&self, input: I) -> ParseResult<I, O, E> {
self.inner.parse(input)
}
fn name(&self) -> Option<String> {
self.name.clone()
}
fn representation(&self) -> Representation {
self.repr.clone()
}
}
impl<P, I, O, E> AnnotatedParser<P, I, O, E>
where
P: Parser<I, O, E>,
{
pub fn new(inner: P) -> Self {
Self {
inner,
name: None,
repr: Representation::new(),
phantom: PhantomData,
}
}
pub fn with_name(self, name: &str) -> Self {
Self {
name: Some(name.to_string()),
..self
}
}
pub fn with_repr(self, repr: Representation) -> Self {
Self { repr, ..self }
}
}

74
src/choice.rs Normal file
View File

@ -0,0 +1,74 @@
use crate::{ParseResult, Parser};
pub trait Choice<I, O, E> {
fn parse_choice(&self, input: I) -> Result<(O, I), (E, I)>;
}
pub fn choice<C: Choice<I, O, E>, I, O, E>(choices: C) -> impl Parser<I, O, E> {
move |input| choices.parse_choice(input)
}
fn choice_loop<'a, I, O, E>(
mut input: I,
parsers: &'a [&'a dyn Parser<I, O, E>],
) -> ParseResult<I, O, E> {
//TODO need a more principled way to return an error when no choices work
let mut err = None;
for parser in parsers.iter() {
match parser.parse(input) {
Ok(res) => return Ok(res),
Err((e, rest)) => {
err = Some(e);
input = rest;
}
}
}
Err((err.unwrap(), input))
}
impl<P1, P2, I, O, E> Choice<I, O, E> for (P1, P2)
where
P1: Parser<I, O, E>,
P2: Parser<I, O, E>,
{
fn parse_choice(&self, input: I) -> Result<(O, I), (E, I)> {
choice_loop(input, &[&self.0, &self.1])
}
}
impl<P1, P2, P3, I, O, E> Choice<I, O, E> for (P1, P2, P3)
where
P1: Parser<I, O, E>,
P2: Parser<I, O, E>,
P3: Parser<I, O, E>,
{
fn parse_choice(&self, input: I) -> Result<(O, I), (E, I)> {
choice_loop(input, &[&self.0, &self.1, &self.2])
}
}
impl<P1, P2, P3, P4, I, O, E> Choice<I, O, E> for (P1, P2, P3, P4)
where
P1: Parser<I, O, E>,
P2: Parser<I, O, E>,
P3: Parser<I, O, E>,
P4: Parser<I, O, E>,
{
fn parse_choice(&self, input: I) -> Result<(O, I), (E, I)> {
choice_loop(input, &[&self.0, &self.1, &self.2, &self.3])
}
}
impl<P1, P2, P3, P4, P5, I, O, E> Choice<I, O, E> for (P1, P2, P3, P4, P5)
where
P1: Parser<I, O, E>,
P2: Parser<I, O, E>,
P3: Parser<I, O, E>,
P4: Parser<I, O, E>,
P5: Parser<I, O, E>,
{
fn parse_choice(&self, input: I) -> Result<(O, I), (E, I)> {
choice_loop(input, &[&self.0, &self.1, &self.2, &self.3, &self.4])
}
}

234
src/combinators.rs Normal file
View File

@ -0,0 +1,234 @@
use std::marker::PhantomData;
use crate::{
representation::{Representation, EBNF},
ParseResult, Parser,
};
pub fn repeated<P, I, O, E>(parser: P) -> Repeated<P, I, O, E>
where
P: Parser<I, O, E>,
{
Repeated::new(parser)
}
pub struct Repeated<P, I, O, E>
where
P: Parser<I, O, E>,
{
inner_parser: P,
phantom: PhantomData<(I, O, E)>,
at_least: Option<u32>,
at_most: Option<u32>,
}
impl<P, I, O, E> Repeated<P, I, O, E>
where
P: Parser<I, O, E>,
{
fn new(inner_parser: P) -> Self {
Self {
inner_parser,
phantom: PhantomData,
at_least: None,
at_most: None,
}
}
pub fn at_least(self, at_least: u32) -> Self {
Self {
at_least: Some(at_least),
..self
}
}
pub fn at_most(self, at_most: u32) -> Self {
Self {
at_most: Some(at_most),
..self
}
}
pub fn separated_by<D>(self, delimiter: D) -> SeparatedBy<D, P, I, O, E>
where
D: Parser<I, (), E>,
E: Default,
{
SeparatedBy {
inner_repeated: self,
delimiter,
allow_trailing: false,
}
}
}
impl<P, I, O, E> Parser<I, Vec<O>, E> for Repeated<P, I, O, E>
where
P: Parser<I, O, E>,
E: Default,
{
fn parse(&self, mut input: I) -> ParseResult<I, Vec<O>, E> {
let at_least = self.at_least.unwrap_or(0);
let at_most = self.at_most.unwrap_or(u32::MAX);
let mut results = vec![];
let mut count = 0;
if at_most == 0 {
return Ok((vec![], input));
}
loop {
match self.inner_parser.parse(input) {
Ok((item, rest)) => {
results.push(item);
input = rest;
count += 1;
if count >= at_most {
break;
}
}
Err((_err, rest)) => {
input = rest;
break;
}
}
}
if count < at_least {
return Err((Default::default(), input));
}
Ok((results, input))
}
fn name(&self) -> Option<String> {
self.inner_parser.name()
}
fn representation(&self) -> Representation {
let at_least = self.at_least.unwrap_or(0);
//TODO flesh this out better
let _at_most = self.at_most.unwrap_or(u32::MAX);
let production = EBNF::Repeated {
inner: Box::new(self.inner_parser.representation().production()),
more_than_once: at_least >= 1,
};
Representation::new().with_production(production)
}
}
pub struct SeparatedBy<D, P, I, O, E>
where
D: Parser<I, (), E>,
P: Parser<I, O, E>,
E: Default,
{
inner_repeated: Repeated<P, I, O, E>,
delimiter: D,
allow_trailing: bool,
}
impl<D, P, I, O, E> SeparatedBy<D, P, I, O, E>
where
D: Parser<I, (), E>,
P: Parser<I, O, E>,
E: Default,
{
pub fn allow_trailing(self, allow_trailing: bool) -> Self {
Self {
allow_trailing,
..self
}
}
}
impl<D, P, I, O, E> Parser<I, Vec<O>, E> for SeparatedBy<D, P, I, O, E>
where
D: Parser<I, (), E>,
P: Parser<I, O, E>,
E: Default,
{
fn parse(&self, mut input: I) -> ParseResult<I, Vec<O>, E> {
let at_least = self.inner_repeated.at_least.unwrap_or(0);
let at_most = self.inner_repeated.at_most.unwrap_or(u32::MAX);
let inner = &self.inner_repeated.inner_parser;
let delimiter = &self.delimiter;
if at_most == 0 {
return Ok((vec![], input));
}
let mut results = Vec::new();
let mut count: u32 = 0;
match inner.parse(input) {
Ok((item, rest)) => {
results.push(item);
input = rest;
}
Err((err, rest)) => {
if at_least > 0 {
return Err((err, rest));
} else {
return Ok((vec![], rest));
}
}
}
loop {
match delimiter.parse(input) {
Ok(((), rest)) => {
input = rest;
count += 1;
}
Err((_err, rest)) => {
input = rest;
break;
}
}
match inner.parse(input) {
Ok((item, rest)) => {
input = rest;
results.push(item);
}
Err((err, rest)) => {
if self.allow_trailing {
input = rest;
break;
} else {
return Err((err, rest));
}
}
}
if count >= at_most {
break;
}
}
if count < at_least {
//return Err(??, rest) <- need to handle errors better
unimplemented!();
}
Ok((results, input))
}
fn representation(&self) -> Representation {
let inner = &self.inner_repeated.inner_parser;
let at_least = self.inner_repeated.at_least.unwrap_or(0);
let inner_production = inner.representation().production();
let delimiter_production = self.delimiter.representation().production();
let production = EBNF::Repeated {
inner: Box::new(EBNF::Sequence(vec![inner_production, delimiter_production])),
more_than_once: at_least >= 1,
};
Representation::new().with_production(production)
}
}
pub fn optional<I, O, E>(parser: impl Parser<I, O, E>) -> impl Parser<I, Option<O>, E>
where
I: Clone,
{
move |input: I| match parser.parse(input.clone()) {
Ok((output, rest)) => Ok((Some(output), rest)),
Err(_e) => Ok((None, input)),
}
}

View File

@ -1,35 +1,20 @@
#![feature(assert_matches)]
#![allow(dead_code)] //TODO eventually turn this off #![allow(dead_code)] //TODO eventually turn this off
mod annotated;
mod choice;
type ParseResult<I, O, E> = Result<(O, I), E>; mod combinators;
mod map;
trait Parser<I, O, E> { mod parser;
fn parse(&self, input: I) -> ParseResult<I, O, E>; mod primitives;
} mod representation;
mod sequence;
impl<I, O, E, F> Parser<I, O, E> for F where F: Fn(I) -> ParseResult<I, O, E> { mod util;
fn parse(&self, input: I) -> ParseResult<I, O, E> {
self(input)
}
}
fn literal(expected: &'static str) -> impl Fn(&str) -> ParseResult<&str, (), &str> {
move |input| match input.get(0..expected.len()) {
Some(next) if next == expected =>
Ok(((), &input[expected.len()..])),
_ => Err(input)
}
}
#[cfg(test)] #[cfg(test)]
mod tests { mod test;
use super::*;
use std::assert_matches::assert_matches;
#[test] pub use choice::*;
fn parsing() { pub use combinators::*;
let output = literal("a")("a yolo"); pub use map::*;
assert_matches!(output.unwrap(), ((), " yolo")); pub use parser::{ParseResult, Parser, ParserExtension};
} pub use primitives::*;
} pub use sequence::*;

16
src/map.rs Normal file
View File

@ -0,0 +1,16 @@
use crate::{representation::Representation, Parser, ParserExtension};
pub fn map<P, F, I, O1, O2, E>(parser: P, map_fn: F) -> impl Parser<I, O2, E>
where
P: Parser<I, O1, E>,
F: Fn(O1) -> O2,
{
let production = parser.representation().production();
(move |input| {
parser
.parse(input)
.map(|(result, rest)| (map_fn(result), rest))
})
.to_anno()
.with_repr(Representation::new().with_production(production))
}

76
src/parser.rs Normal file
View File

@ -0,0 +1,76 @@
use crate::{annotated::AnnotatedParser, map, representation::Representation, seq2, surrounded_by};
pub type ParseResult<I, O, E> = Result<(O, I), (E, I)>;
pub trait Parser<I, O, E> {
fn parse(&self, input: I) -> ParseResult<I, O, E>;
fn name(&self) -> Option<String> {
None
}
fn representation(&self) -> Representation {
Representation::new()
}
}
impl<I, O, E, F> Parser<I, O, E> for F
where
F: Fn(I) -> ParseResult<I, O, E>,
{
fn parse(&self, input: I) -> ParseResult<I, O, E> {
self(input)
}
}
pub trait ParserExtension<I, O, E>: Parser<I, O, E> {
fn map<F, O2>(self, map_fn: F) -> impl Parser<I, O2, E>
where
F: Fn(O) -> O2;
fn to<O2: Clone>(self, item: O2) -> impl Parser<I, O2, E>;
fn then<O2, P: Parser<I, O2, E>>(self, next: P) -> impl Parser<I, (O, O2), E>;
fn then_ignore<O2, P: Parser<I, O2, E>>(self, next: P) -> impl Parser<I, O, E>;
fn ignore_then<O2, P: Parser<I, O2, E>>(self, next: P) -> impl Parser<I, O2, E>;
fn surrounded_by<O2>(self, surrounding: impl Parser<I, O2, E>) -> impl Parser<I, O, E>;
fn to_anno(self) -> AnnotatedParser<Self, I, O, E>
where
Self: Sized,
{
AnnotatedParser::new(self)
}
fn to_named(self, name: &str) -> AnnotatedParser<Self, I, O, E>
where
Self: Sized,
{
AnnotatedParser::new(self).with_name(name)
}
}
impl<T, I, O, E> ParserExtension<I, O, E> for T
where
T: Parser<I, O, E>,
{
fn map<F, O2>(self, map_fn: F) -> impl Parser<I, O2, E>
where
F: Fn(O) -> O2,
{
map(self, map_fn)
}
fn to<O2: Clone>(self, item: O2) -> impl Parser<I, O2, E> {
self.map(move |_| item.clone())
}
fn then<O2, P: Parser<I, O2, E>>(self, next: P) -> impl Parser<I, (O, O2), E> {
seq2(self, next)
}
fn then_ignore<O2, P: Parser<I, O2, E>>(self, next: P) -> impl Parser<I, O, E> {
seq2(self, next).map(|(this, _)| this)
}
fn ignore_then<O2, P: Parser<I, O2, E>>(self, next: P) -> impl Parser<I, O2, E> {
seq2(self, next).map(|(_, next)| next)
}
fn surrounded_by<O2>(self, surrounding: impl Parser<I, O2, E>) -> impl Parser<I, O, E> {
surrounded_by(self, surrounding)
}
}

110
src/primitives.rs Normal file
View File

@ -0,0 +1,110 @@
use crate::{
representation::{Representation, EBNF},
ParseResult, Parser, ParserExtension,
};
pub fn literal<'a>(expected: &'static str) -> impl Parser<&'a str, &'a str, ()> {
let p = move |input: &'a str| match input.get(0..expected.len()) {
Some(next) if next == expected => Ok((next, &input[expected.len()..])),
_ => Err(((), input)),
};
let production = EBNF::StringTerminal(expected.into());
p.to_anno()
.with_repr(Representation::new().with_production(production))
}
pub fn literal_char<'a>(expected: char) -> impl Parser<&'a str, char, ()> {
(move |input: &'a str| match input.chars().next() {
Some(ch) if ch == expected => Ok((expected, &input[ch.len_utf8()..])),
_ => Err(((), input)),
})
.to_anno()
.with_repr(Representation::new().with_production(EBNF::CharTerminal(expected)))
}
pub fn one_of<'a>(items: &'static str) -> impl Parser<&'a str, char, ()> {
(move |input: &'a str| {
if let Some(ch) = input.chars().next() {
if items.contains(ch) {
let (_first, rest) = input.split_at(1);
return Ok((ch, rest));
}
}
Err(((), input))
})
.to_anno()
.with_repr(
Representation::new().with_production(EBNF::Alternation(
items
.chars()
.map(|ch| EBNF::CharTerminal(ch))
.collect::<Vec<_>>(),
)),
)
}
/// Parses a standard identifier in a programming language
pub fn identifier(input: &str) -> ParseResult<&str, String, ()> {
let mut chars = input.chars();
let mut buf = String::new();
match chars.next() {
Some(ch) if ch.is_alphabetic() => buf.push(ch),
_ => return Err(((), input)),
}
for next in chars {
if next.is_alphanumeric() {
buf.push(next);
} else {
break;
}
}
let next_index = buf.len();
Ok((buf, &input[next_index..]))
}
pub struct Whitespace;
impl Parser<&str, char, ()> for Whitespace {
fn name(&self) -> Option<String> {
Some("whitespace".into())
}
fn representation(&self) -> Representation {
Representation::new().with_production(EBNF::LabeledTerminal("whitespace".into()))
}
fn parse<'a>(&self, input: &'a str) -> ParseResult<&'a str, char, ()> {
match input.chars().next() {
Some(ch) if ch.is_whitespace() => Ok((ch, &input[1..])),
_ => Err(((), input)),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn primitive_parsers() {
let parser = literal_char('f');
assert_eq!(Ok(('f', "unky")), parser.parse("funky"));
let repr = parser.representation();
assert!(matches!(repr.production(), EBNF::CharTerminal('f')));
let parser = one_of("asdf");
let production = parser.representation().production();
assert!(
matches!(production, EBNF::Alternation(v) if matches!(v.as_slice(), [
EBNF::CharTerminal('a'),
EBNF::CharTerminal('s'),
EBNF::CharTerminal('d'),
EBNF::CharTerminal('f'),
]))
);
}
}

129
src/representation.rs Normal file
View File

@ -0,0 +1,129 @@
use std::fmt;
use crate::util::intersperse_option;
#[derive(Debug, Clone)]
pub struct Representation {
production_output: EBNF,
}
impl Representation {
pub fn show(&self) -> String {
self.production_output.to_string()
}
pub fn production(&self) -> EBNF {
self.production_output.clone()
}
pub fn new() -> Self {
Self {
production_output: EBNF::None,
}
}
pub fn with_production(self, production_output: EBNF) -> Self {
Self {
production_output,
..self
}
}
}
#[derive(Debug, Clone)]
pub enum EBNF {
None,
Nonterminal(String),
CharTerminal(char),
StringTerminal(String),
LabeledTerminal(String),
Alternation(Vec<EBNF>),
Sequence(Vec<EBNF>),
Repeated {
inner: Box<EBNF>,
more_than_once: bool,
},
}
impl EBNF {
fn needs_wrapping(&self) -> bool {
match self {
EBNF::None => false,
EBNF::Nonterminal(_) => false,
EBNF::CharTerminal(_) => false,
EBNF::StringTerminal(_) => false,
EBNF::LabeledTerminal(_) => false,
EBNF::Sequence(items) => items.len() > 1,
EBNF::Alternation(_) => true,
EBNF::Repeated { .. } => false,
}
}
}
impl fmt::Display for EBNF {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
//TODO should try to show the name if possible
EBNF::None => write!(f, "<no-representation>"),
EBNF::CharTerminal(ch) => write!(f, "'{ch}'"),
EBNF::Alternation(items) => {
for item in intersperse_option(items.iter()) {
match item {
None => write!(f, " | ")?,
Some(item) => write!(f, "{item}")?,
}
}
write!(f, "")
}
EBNF::Nonterminal(name) => write!(f, "{name}"),
EBNF::StringTerminal(term) => write!(f, r#""{term}""#),
EBNF::LabeledTerminal(s) => write!(f, "<{s}>"),
EBNF::Repeated {
inner,
more_than_once,
} => {
let sigil = if *more_than_once { '+' } else { '*' };
if inner.needs_wrapping() {
write!(f, "[{inner}]{sigil}")
} else {
write!(f, "{inner}{sigil}")
}
}
EBNF::Sequence(items) => {
for item in intersperse_option(items.iter()) {
if let Some(item) = item {
write!(f, "{item}")?;
} else {
write!(f, " ")?;
}
}
write!(f, "")
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_ebnf_print() {
let example = EBNF::Alternation(vec![
EBNF::CharTerminal('f'),
EBNF::CharTerminal('a'),
EBNF::CharTerminal('k'),
EBNF::CharTerminal('e'),
]);
assert_eq!(example.to_string(), "'f' | 'a' | 'k' | 'e'");
let example = EBNF::Alternation(vec![
EBNF::Nonterminal("other-rule".into()),
EBNF::CharTerminal('q'),
EBNF::CharTerminal('m'),
EBNF::StringTerminal("focus".into()),
]);
assert_eq!(example.to_string(), "other-rule | 'q' | 'm' | \"focus\"");
}
}

102
src/sequence.rs Normal file
View File

@ -0,0 +1,102 @@
use crate::{
representation::{Representation, EBNF},
ParseResult, Parser, ParserExtension,
};
pub fn sequence<S, I, O, E>(sequence: S) -> impl Parser<I, O, E>
where
S: Sequence<I, O, E>,
{
let repr = sequence.repr();
(move |input| -> ParseResult<I, O, E> { sequence.parse(input) })
.to_anno()
.with_repr(repr)
}
pub fn surrounded_by<I, O1, O2, E>(
main: impl Parser<I, O1, E>,
surrounding: impl Parser<I, O2, E>,
) -> impl Parser<I, O1, E> {
let s_prod = surrounding.representation().production();
let main_prod = main.representation().production();
(move |input| {
let (_result1, rest1) = surrounding.parse(input)?;
let (result2, rest2) = main.parse(rest1)?;
let (_result3, rest3) = surrounding.parse(rest2)?;
Ok((result2, rest3))
})
.to_anno()
.with_repr(Representation::new().with_production(EBNF::Sequence(vec![
s_prod.clone(),
main_prod,
s_prod,
])))
}
pub fn seq2<I, O1, O2, E>(
first: impl Parser<I, O1, E>,
second: impl Parser<I, O2, E>,
) -> impl Parser<I, (O1, O2), E> {
sequence((first, second))
}
pub trait Sequence<I, O, E> {
fn parse(&self, input: I) -> ParseResult<I, O, E>;
fn repr(&self) -> Representation;
}
impl<P1, P2, I, O1, O2, E> Sequence<I, (O1, O2), E> for (P1, P2)
where
P1: Parser<I, O1, E>,
P2: Parser<I, O2, E>,
{
fn parse(&self, input: I) -> ParseResult<I, (O1, O2), E> {
let p1 = &self.0;
let p2 = &self.1;
p1.parse(input).and_then(|(result1, rest)| {
p2.parse(rest)
.map(|(result2, rest2)| ((result1, result2), rest2))
})
}
fn repr(&self) -> Representation {
let p1 = &self.0;
let p2 = &self.1;
Representation::new().with_production(EBNF::Sequence(vec![
p1.representation().production(),
p2.representation().production(),
]))
}
}
impl<P1, P2, P3, I, O1, O2, O3, E> Sequence<I, (O1, O2, O3), E> for (P1, P2, P3)
where
P1: Parser<I, O1, E>,
P2: Parser<I, O2, E>,
P3: Parser<I, O3, E>,
{
fn parse(&self, input: I) -> ParseResult<I, (O1, O2, O3), E> {
let p1 = &self.0;
let p2 = &self.1;
let p3 = &self.2;
let (result1, rest1) = p1.parse(input)?;
let (result2, rest2) = p2.parse(rest1)?;
let (result3, rest3) = p3.parse(rest2)?;
Ok(((result1, result2, result3), rest3))
}
fn repr(&self) -> Representation {
let p1 = &self.0;
let p2 = &self.1;
let p3 = &self.2;
Representation::new().with_production(EBNF::Sequence(vec![
p1.representation().production(),
p2.representation().production(),
p3.representation().production(),
]))
}
}

98
src/test/mod.rs Normal file
View File

@ -0,0 +1,98 @@
mod sexp;
use super::*;
#[test]
fn basic_parsing() {
let (parsed, rest) = literal("a").parse("a yolo").unwrap();
assert_eq!(parsed, "a");
assert_eq!(rest, " yolo");
fn bare_function_parser(input: &str) -> ParseResult<&str, i32, String> {
match input.chars().next() {
Some('0') => Ok((0, &input[1..])),
Some('1') => Ok((1, &input[1..])),
_ => Err(("lol a parse error".to_string(), input)),
}
}
assert_eq!(bare_function_parser.parse("0foo"), Ok((0, "foo")));
assert_eq!(
bare_function_parser.parse("xfoo"),
Err(("lol a parse error".to_string(), "xfoo"))
);
}
#[test]
fn test_sequence() {
let parser = seq2(literal("bongo"), seq2(literal(" "), literal("jonzzz")));
let output = parser.parse("bongo jonzzz").unwrap();
assert_eq!(output.0 .0, "bongo");
assert_eq!(output.0 .1, (" ", "jonzzz"));
assert_eq!(output.1, "");
}
#[test]
fn test_choice() {
let parser = choice((literal("bongo"), literal("sucy"), literal("ara")));
let output = parser.parse("ara hajimete").unwrap();
assert_eq!(("ara", " hajimete"), output);
}
#[test]
fn test_map() {
let parser =
seq2(literal("a"), literal("b")).map(|(a, _b): (&str, &str)| (a.to_uppercase(), 59));
let output = parser.parse("abcd").unwrap();
assert_eq!((("A".to_owned(), 59), "cd"), output);
let spaces = repeated(literal_char(' ')).at_least(1);
let parser = seq2(literal("lute"), spaces).to(500);
assert_eq!(parser.parse("lute "), Ok((500, "")));
assert_eq!(parser.parse("lute"), Err(((), "")));
}
#[test]
fn test_combinators() {
let parser = repeated(literal_char('a')).to(10).then(literal_char('b'));
let output = parser.parse("aaaaaaaabcd").unwrap();
assert_eq! {((10, 'b'), "cd"), output};
}
#[test]
fn test_optional() {
let parser = seq2(
optional(literal("alpha")),
seq2(repeated(literal(" ")), literal("beta")),
);
let output1 = parser.parse(" beta").unwrap();
assert_eq!(output1.0 .0, None);
let output2 = parser.parse("alpha beta").unwrap();
assert_eq!(output2.0 .0, Some("alpha"));
}
#[test]
fn test_repeated() {
let spaces = repeated(literal_char(' ')).at_least(1);
let bongo = literal("bongo");
let parser = repeated(bongo).separated_by(map(spaces, |_| ()));
let output = parser.parse("bongo bongo bongo bongo");
let output = output.unwrap();
assert_eq!(output.0, vec!["bongo", "bongo", "bongo", "bongo"]);
assert_eq!(parser.representation().show(), r#"["bongo" ' '+]*"#);
let bongos = repeated(literal("bongo"));
let output = bongos.parse("tra la la").unwrap();
assert_eq!(output.0.len(), 0);
assert_eq!(output.1, "tra la la");
assert_eq!(bongos.representation().show(), r#""bongo"*"#);
}
#[test]
fn test_named_parser() {
let parser = literal("yokel").to_named("yokelparser");
assert_eq!(parser.name(), Some("yokelparser".to_string()));
}

103
src/test/sexp.rs Normal file
View File

@ -0,0 +1,103 @@
use crate::*;
#[derive(Debug, PartialEq)]
enum Expr {
Atom(Atom),
List(Vec<Expr>),
Quote(Vec<Expr>),
}
#[derive(Clone, Debug, PartialEq)]
enum Atom {
Num(i64),
Str(String),
Bool(bool),
Symbol(String),
}
fn parse_bool(input: &str) -> ParseResult<&str, Atom, ()> {
choice((
literal("#t").to(Atom::Bool(true)),
literal("#f").to(Atom::Bool(false)),
))
.parse(input)
}
fn parse_symbol(input: &str) -> ParseResult<&str, Atom, ()> {
identifier.map(Atom::Symbol).parse(input)
}
fn parse_number(input: &str) -> ParseResult<&str, Atom, ()> {
repeated(one_of("1234567890"))
.at_least(1)
.map(|n| Atom::Num(n.iter().collect::<String>().parse::<i64>().unwrap()))
.parse(input)
}
fn parse_atom(input: &str) -> ParseResult<&str, Atom, ()> {
choice((parse_symbol, parse_bool, parse_number)).parse(input)
}
#[test]
fn test_parse_atom() {
let output = parse_atom.parse("#t").unwrap();
assert_eq!(output.0, Atom::Bool(true));
let output = parse_atom.parse("384").unwrap();
assert_eq!(output.0, Atom::Num(384));
}
fn parse_expr(input: &str) -> ParseResult<&str, Expr, ()> {
choice((parse_list, parse_atom.map(Expr::Atom))).parse(input)
}
fn parse_list(input: &str) -> ParseResult<&str, Expr, ()> {
literal_char('(')
.ignore_then(
repeated(parse_expr)
.separated_by(repeated(Whitespace).at_least(1).to(()))
.allow_trailing(true),
)
.then_ignore(literal_char(')'))
.map(Expr::List)
.parse(input)
}
#[test]
fn test_parse_list() {
let output = parse_list.parse("(1 2 (1 2) 9999 3)").unwrap();
assert_eq!(output.1, "");
}
fn parse_sexp(input: &str) -> ParseResult<&str, Expr, ()> {
parse_list.surrounded_by(repeated(Whitespace)).parse(input)
}
#[test]
fn test_parse_sexp() {
let output = parse_expr("(add 1 2)").unwrap();
assert_eq!(
output.0,
Expr::List(vec![
Expr::Atom(Atom::Symbol("add".to_string())),
Expr::Atom(Atom::Num(1)),
Expr::Atom(Atom::Num(2))
])
);
assert_eq!(output.1, "");
let complex_input = r#"
(add (mul 28 9)
(if (eq a b) (jump #t) (hula 44))
)"#
.trim();
let output = parse_sexp(complex_input).unwrap();
assert_eq!(output.1, "");
}
#[ignore = "won't work until representations can be passed more easily around"]
#[test]
fn test_parse_sexp_repr() {
assert_eq!(parse_sexp.representation().show(), r#"["bongo" ' '+]*"#);
}

46
src/util.rs Normal file
View File

@ -0,0 +1,46 @@
use std::iter::Peekable;
pub(crate) fn intersperse_option<I: Iterator>(iterator: I) -> impl Iterator<Item = Option<I::Item>>
where
I::Item: Clone,
{
intersperse(iterator.map(Some), None)
}
pub(crate) fn intersperse<I: Iterator>(iterator: I, separator: I::Item) -> Intersperse<I>
where
I::Item: Clone,
{
Intersperse {
inner: iterator.peekable(),
separator,
needs_sep: false,
}
}
pub struct Intersperse<I>
where
I: Iterator,
{
inner: Peekable<I>,
separator: I::Item,
needs_sep: bool,
}
impl<I> Iterator for Intersperse<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.needs_sep && self.inner.peek().is_some() {
self.needs_sep = false;
Some(self.separator.clone())
} else {
self.needs_sep = true;
self.inner.next()
}
}
}