Remove old reduced_ast, eval

This commit is contained in:
Greg Shuflin 2021-10-26 13:07:39 -07:00
parent 47ff6b3cb5
commit 0808bcbc87
4 changed files with 0 additions and 1088 deletions

View File

@ -1,444 +0,0 @@
use std::rc::Rc;
use std::fmt::Write;
use std::io;
use crate::util::ScopeStack;
use crate::reduced_ast::{BoundVars, ReducedAST, Stmt, Expr, Lit, Func, Alternative, Pattern};
use crate::builtin::Builtin;
mod test;
pub struct State<'a> {
values: ScopeStack<'a, Rc<String>, ValueEntry>,
}
impl<'a> State<'a> {
pub fn new() -> State<'a> {
let values = ScopeStack::new(Some("global".to_string()));
State { values }
}
#[allow(clippy::ptr_arg)]
fn new_frame(&'a self, items: &'a [Node], bound_vars: &BoundVars) -> State<'a> {
let mut inner_state = State {
values: self.values.new_scope(None),
};
for (bound_var, val) in bound_vars.iter().zip(items.iter()) {
if let Some(bv) = bound_var.as_ref() {
inner_state.values.insert(bv.clone(), ValueEntry::Binding { constant: true, val: val.clone() });
}
}
inner_state
}
}
#[derive(Debug, Clone)]
enum Node {
Expr(Expr),
PrimObject {
name: Rc<String>,
tag: usize,
items: Vec<Node>,
},
PrimTuple {
items: Vec<Node>
}
}
fn paren_wrapped_vec(terms: impl Iterator<Item=String>) -> String {
let mut buf = String::new();
write!(buf, "(").unwrap();
for term in terms.map(Some).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e).unwrap(),
None => write!(buf, ", ").unwrap(),
};
}
write!(buf, ")").unwrap();
buf
}
impl Node {
fn to_repl(&self) -> String {
match self {
Node::Expr(e) => e.to_repl(),
Node::PrimObject { name, items, .. } if items.is_empty() => format!("{}", name),
Node::PrimObject { name, items, .. } => format!("{}{}", name, paren_wrapped_vec(items.iter().map(|x| x.to_repl()))),
Node::PrimTuple { items } => paren_wrapped_vec(items.iter().map(|x| x.to_repl())),
}
}
fn is_true(&self) -> bool {
matches!(self, Node::Expr(Expr::Lit(crate::reduced_ast::Lit::Bool(true))))
}
}
#[derive(Debug)]
enum ValueEntry {
Binding {
constant: bool,
val: /*FullyEvaluatedExpr*/ Node, //TODO make this use a subtype to represent fully evaluatedness
}
}
type EvalResult<T> = Result<T, String>;
impl Expr {
#[allow(clippy::wrong_self_convention)]
fn to_node(self) -> Node {
Node::Expr(self)
}
fn to_repl(&self) -> String {
use self::Lit::*;
use self::Func::*;
match self {
Expr::Lit(ref l) => match l {
Nat(n) => format!("{}", n),
Int(i) => format!("{}", i),
Float(f) => format!("{}", f),
Bool(b) => format!("{}", b),
StringLit(s) => format!("\"{}\"", s),
},
Expr::Func(f) => match f {
BuiltIn(builtin) => format!("<built-in function '{:?}'>", builtin),
UserDefined { name: None, .. } => "<function>".to_string(),
UserDefined { name: Some(name), .. } => format!("<function '{}'>", name),
},
Expr::Constructor { type_name, arity, .. } => {
format!("<constructor for `{}` arity {}>", type_name, arity)
},
Expr::Tuple(exprs) => paren_wrapped_vec(exprs.iter().map(|x| x.to_repl())),
_ => format!("{:?}", self),
}
}
fn replace_conditional_target_sigil(self, replacement: &Expr) -> Expr {
use self::Expr::*;
match self {
ConditionalTargetSigilValue => replacement.clone(),
Lit(_) | Func(_) | Sym(_) | Constructor { .. } |
CaseMatch { .. } | UnimplementedSigilValue | ReductionError(_) => self,
Tuple(exprs) => Tuple(exprs.into_iter().map(|e| e.replace_conditional_target_sigil(replacement)).collect()),
Call { f, args } => {
let new_args = args.into_iter().map(|e| e.replace_conditional_target_sigil(replacement)).collect();
Call { f, args: new_args }
},
Conditional { .. } => panic!("Dunno if I need this, but if so implement"),
Assign { .. } => panic!("I'm pretty sure I don't need this"),
}
}
}
impl<'a> State<'a> {
pub fn evaluate(&mut self, ast: ReducedAST, repl: bool) -> Vec<Result<String, String>> {
let mut acc = vec![];
// handle prebindings
for statement in ast.0.iter() {
self.prebinding(statement);
}
for statement in ast.0 {
match self.statement(statement) {
Ok(Some(ref output)) if repl => {
acc.push(Ok(output.to_repl()))
},
Ok(_) => (),
Err(error) => {
acc.push(Err(format!("Runtime error: {}", error)));
return acc;
},
}
}
acc
}
fn prebinding(&mut self, stmt: &Stmt) {
match stmt {
Stmt::PreBinding { name, func } => {
let v_entry = ValueEntry::Binding { constant: true, val: Node::Expr(Expr::Func(func.clone())) };
self.values.insert(name.clone(), v_entry);
},
Stmt::Expr(_expr) => {
//TODO have this support things like nested function defs
},
_ => ()
}
}
fn statement(&mut self, stmt: Stmt) -> EvalResult<Option<Node>> {
match stmt {
Stmt::Binding { name, constant, expr } => {
let val = self.expression(Node::Expr(expr))?;
self.values.insert(name, ValueEntry::Binding { constant, val });
Ok(None)
},
Stmt::Expr(expr) => Ok(Some(self.expression(expr.to_node())?)),
Stmt::PreBinding {..} | Stmt::Noop => Ok(None),
}
}
fn block(&mut self, stmts: Vec<Stmt>) -> EvalResult<Node> {
let mut ret = None;
for stmt in stmts {
ret = self.statement(stmt)?;
}
Ok(ret.unwrap_or_else(|| Node::Expr(Expr::unit())))
}
fn expression(&mut self, node: Node) -> EvalResult<Node> {
use self::Expr::*;
match node {
t @ Node::PrimTuple { .. } => Ok(t),
obj @ Node::PrimObject { .. } => Ok(obj),
Node::Expr(expr) => match expr {
literal @ Lit(_) => Ok(Node::Expr(literal)),
Call { box f, args } => self.call_expression(f, args),
Sym(name) => Ok(match self.values.lookup(&name) {
Some(ValueEntry::Binding { val, .. }) => val.clone(),
None => return Err(format!("Could not look up symbol {}", name))
}),
Constructor { arity, ref name, tag, .. } if arity == 0 => Ok(Node::PrimObject { name: name.clone(), tag, items: vec![] }),
constructor @ Constructor { .. } => Ok(Node::Expr(constructor)),
func @ Func(_) => Ok(Node::Expr(func)),
Tuple(exprs) => {
let nodes = exprs.into_iter().map(|expr| self.expression(Node::Expr(expr))).collect::<Result<Vec<Node>,_>>()?;
Ok(Node::PrimTuple { items: nodes })
},
Conditional { box cond, then_clause, else_clause } => self.conditional(cond, then_clause, else_clause),
Assign { box val, box expr } => self.assign_expression(val, expr),
CaseMatch { box cond, alternatives } => self.case_match_expression(cond, alternatives),
ConditionalTargetSigilValue => Ok(Node::Expr(ConditionalTargetSigilValue)),
UnimplementedSigilValue => Err("Sigil value eval not implemented".to_string()),
ReductionError(err) => Err(format!("Reduction error: {}", err)),
}
}
}
fn call_expression(&mut self, f: Expr, args: Vec<Expr>) -> EvalResult<Node> {
use self::Expr::*;
match self.expression(Node::Expr(f))? {
Node::Expr(Constructor { type_name, name, tag, arity }) => self.apply_data_constructor(type_name, name, tag, arity, args),
Node::Expr(Func(f)) => self.apply_function(f, args),
other => return Err(format!("Tried to call {:?} which is not a function or data constructor", other)),
}
}
fn apply_data_constructor(&mut self, _type_name: Rc<String>, name: Rc<String>, tag: usize, arity: usize, args: Vec<Expr>) -> EvalResult<Node> {
if arity != args.len() {
return Err(format!("Data constructor {} requires {} arg(s)", name, arity));
}
let evaled_args = args.into_iter().map(|expr| self.expression(Node::Expr(expr))).collect::<Result<Vec<Node>,_>>()?;
//let evaled_args = vec![];
Ok(Node::PrimObject {
name,
items: evaled_args,
tag
})
}
fn apply_function(&mut self, f: Func, args: Vec<Expr>) -> EvalResult<Node> {
match f {
Func::BuiltIn(builtin) => Ok(self.apply_builtin(builtin, args)?),
Func::UserDefined { params, body, name } => {
if params.len() != args.len() {
return Err(format!("calling a {}-argument function with {} args", params.len(), args.len()))
}
let mut func_state = State {
values: self.values.new_scope(name.map(|n| format!("{}", n))),
};
for (param, val) in params.into_iter().zip(args.into_iter()) {
let val = func_state.expression(Node::Expr(val))?;
func_state.values.insert(param, ValueEntry::Binding { constant: true, val });
}
// TODO figure out function return semantics
func_state.block(body)
}
}
}
fn apply_builtin(&mut self, builtin: Builtin, args: Vec<Expr>) -> EvalResult<Node> {
use self::Expr::*;
use self::Lit::*;
use Builtin::*;
let evaled_args: Result<Vec<Node>, String> = args.into_iter().map(|arg| self.expression(arg.to_node()))
.collect();
let evaled_args = evaled_args?;
Ok(match (builtin, evaled_args.as_slice()) {
(FieldAccess, &[Node::PrimObject { .. }]) => {
//TODO implement field access
unimplemented!()
},
(binop, &[Node::Expr(ref lhs), Node::Expr(ref rhs)]) => match (binop, lhs, rhs) {
/* binops */
(Add, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l + r)),
(Concatenate, Lit(StringLit(ref s1)), Lit(StringLit(ref s2))) => Lit(StringLit(Rc::new(format!("{}{}", s1, s2)))),
(Subtract, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l - r)),
(Multiply, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l * r)),
(Divide, Lit(Nat(l)), Lit(Nat(r))) => Lit(Float((*l as f64)/ (*r as f64))),
(Quotient, Lit(Nat(l)), Lit(Nat(r))) => if *r == 0 {
return Err("Divide-by-zero error".to_string());
} else {
Lit(Nat(l / r))
},
(Modulo, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l % r)),
(Exponentiation, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l ^ r)),
(BitwiseAnd, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l & r)),
(BitwiseOr, Lit(Nat(l)), Lit(Nat(r))) => Lit(Nat(l | r)),
/* comparisons */
(Equality, Lit(Nat(l)), Lit(Nat(r))) => Lit(Bool(l == r)),
(Equality, Lit(Int(l)), Lit(Int(r))) => Lit(Bool(l == r)),
(Equality, Lit(Float(l)), Lit(Float(r))) => Lit(Bool(l == r)),
(Equality, Lit(Bool(l)), Lit(Bool(r))) => Lit(Bool(l == r)),
(Equality, Lit(StringLit(ref l)), Lit(StringLit(ref r))) => Lit(Bool(l == r)),
(LessThan, Lit(Nat(l)), Lit(Nat(r))) => Lit(Bool(l < r)),
(LessThan, Lit(Int(l)), Lit(Int(r))) => Lit(Bool(l < r)),
(LessThan, Lit(Float(l)), Lit(Float(r))) => Lit(Bool(l < r)),
(LessThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Lit(Bool(l <= r)),
(LessThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Lit(Bool(l <= r)),
(LessThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Lit(Bool(l <= r)),
(GreaterThan, Lit(Nat(l)), Lit(Nat(r))) => Lit(Bool(l > r)),
(GreaterThan, Lit(Int(l)), Lit(Int(r))) => Lit(Bool(l > r)),
(GreaterThan, Lit(Float(l)), Lit(Float(r))) => Lit(Bool(l > r)),
(GreaterThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Lit(Bool(l >= r)),
(GreaterThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Lit(Bool(l >= r)),
(GreaterThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Lit(Bool(l >= r)),
_ => return Err("No valid binop".to_string())
}.to_node(),
(prefix, &[Node::Expr(ref arg)]) => match (prefix, arg) {
(BooleanNot, Lit(Bool(true))) => Lit(Bool(false)),
(BooleanNot, Lit(Bool(false))) => Lit(Bool(true)),
(Negate, Lit(Nat(n))) => Lit(Int(-(*n as i64))),
(Negate, Lit(Int(n))) => Lit(Int(-(*n as i64))),
(Increment, Lit(Int(n))) => Lit(Int(*n)),
(Increment, Lit(Nat(n))) => Lit(Nat(*n)),
_ => return Err("No valid prefix op".to_string())
}.to_node(),
/* builtin functions */
(IOPrint, &[ref anything]) => {
print!("{}", anything.to_repl());
Expr::unit().to_node()
},
(IOPrintLn, &[ref anything]) => {
println!("{}", anything.to_repl());
Expr::unit().to_node()
},
(IOGetLine, &[]) => {
let mut buf = String::new();
io::stdin().read_line(&mut buf).expect("Error readling line in 'getline'");
Lit(StringLit(Rc::new(buf.trim().to_string()))).to_node()
},
(x, args) => return Err(format!("bad or unimplemented builtin {:?} | {:?}", x, args)),
})
}
fn conditional(&mut self, cond: Expr, then_clause: Vec<Stmt>, else_clause: Vec<Stmt>) -> EvalResult<Node> {
let cond = self.expression(Node::Expr(cond))?;
Ok(match cond {
Node::Expr(Expr::Lit(Lit::Bool(true))) => self.block(then_clause)?,
Node::Expr(Expr::Lit(Lit::Bool(false))) => self.block(else_clause)?,
_ => return Err("Conditional with non-boolean condition".to_string())
})
}
fn assign_expression(&mut self, val: Expr, expr: Expr) -> EvalResult<Node> {
let name = match val {
Expr::Sym(name) => name,
_ => return Err("Trying to assign to a non-value".to_string()),
};
let constant = match self.values.lookup(&name) {
None => return Err(format!("Constant {} is undefined", name)),
Some(ValueEntry::Binding { constant, .. }) => *constant,
};
if constant {
return Err(format!("trying to update {}, a non-mutable binding", name));
}
let val = self.expression(Node::Expr(expr))?;
self.values.insert(name, ValueEntry::Binding { constant: false, val });
Ok(Node::Expr(Expr::unit()))
}
fn guard_passes(&mut self, guard: &Option<Expr>, cond: &Node) -> EvalResult<bool> {
if let Some(ref guard_expr) = guard {
let guard_expr = match cond {
Node::Expr(ref e) => guard_expr.clone().replace_conditional_target_sigil(e),
_ => guard_expr.clone()
};
Ok(self.expression(guard_expr.to_node())?.is_true())
} else {
Ok(true)
}
}
fn case_match_expression(&mut self, cond: Expr, alternatives: Vec<Alternative>) -> EvalResult<Node> {
//TODO need to handle recursive subpatterns
let all_subpatterns_pass = |state: &mut State, subpatterns: &Vec<Option<Subpattern>>, items: &Vec<Node>| -> EvalResult<bool> {
if subpatterns.is_empty() {
return Ok(true)
}
if items.len() != subpatterns.len() {
return Err(format!("Subpattern length isn't correct items {} subpatterns {}", items.len(), subpatterns.len()));
}
for (maybe_subp, cond) in subpatterns.iter().zip(items.iter()) {
if let Some(subp) = maybe_subp {
if !state.guard_passes(&subp.guard, cond)? {
return Ok(false)
}
}
}
Ok(true)
};
let cond = self.expression(Node::Expr(cond))?;
for alt in alternatives {
// no matter what type of condition we have, ignore alternative if the guard evaluates false
if !self.guard_passes(&alt.matchable.guard, &cond)? {
continue;
}
match cond {
Node::PrimObject { ref tag, ref items, .. } => {
if alt.matchable.tag.map(|t| t == *tag).unwrap_or(true) {
let mut inner_state = self.new_frame(items, &alt.matchable.bound_vars);
if all_subpatterns_pass(&mut inner_state, &alt.matchable.subpatterns, items)? {
return inner_state.block(alt.item);
} else {
continue;
}
}
},
Node::PrimTuple { ref items } => {
let mut inner_state = self.new_frame(items, &alt.matchable.bound_vars);
if all_subpatterns_pass(&mut inner_state, &alt.matchable.subpatterns, items)? {
return inner_state.block(alt.item);
} else {
continue;
}
},
Node::Expr(ref _e) => {
if alt.matchable.tag.is_none() {
return self.block(alt.item)
}
}
}
}
Err(format!("{:?} failed pattern match", cond))
}
}

View File

@ -1,32 +0,0 @@
#![cfg(test)]
use crate::symbol_table::SymbolTable;
use crate::reduced_ast::reduce;
use crate::eval::State;
fn evaluate_all_outputs(input: &str) -> Vec<Result<String, String>> {
let ast = crate::util::quick_ast(input);
let mut symbol_table = SymbolTable::new();
symbol_table.process_ast(&ast).unwrap();
let reduced = reduce(&ast, &symbol_table);
let mut state = State::new();
state.evaluate(reduced, true)
}
macro_rules! test_in_fresh_env {
($string:expr, $correct:expr) => {
{
let all_output = evaluate_all_outputs($string);
let output = &all_output.last().unwrap();
assert_eq!(**output, Ok($correct.to_string()));
}
}
}

View File

@ -1,514 +0,0 @@
//! # Reduced AST
//! The reduced AST is a minimal AST designed to be built from the full AST after all possible
//! static checks have been done. Consequently, the AST reduction phase does very little error
//! checking itself - any errors should ideally be caught either by an earlier phase, or are
//! runtime errors that the evaluator should handle. That said, becuase it does do table lookups
//! that can in principle fail [especially at the moment with most static analysis not yet complete],
//! there is an Expr variant `ReductionError` to handle these cases.
//!
//! A design decision to make - should the ReducedAST types contain all information about
//! type/layout necessary for the evaluator to work? If so, then the evaluator should not
//! have access to the symbol table at all and ReducedAST should carry that information. If not,
//! then ReducedAST shouldn't be duplicating information that can be queried at runtime from the
//! symbol table. But I think the former might make sense since ultimately the bytecode will be
//! built from the ReducedAST.
use std::convert::TryFrom;
use std::rc::Rc;
use std::str::FromStr;
use crate::ast::*;
use crate::builtin::Builtin;
use crate::symbol_table::{Symbol, SymbolSpec, SymbolTable};
use crate::util::deref_optional_box;
mod types;
pub use types::*;
pub fn reduce(ast: &AST, symbol_table: &SymbolTable) -> ReducedAST {
let mut reducer = Reducer { symbol_table };
reducer.ast(ast)
}
struct Reducer<'a> {
symbol_table: &'a SymbolTable,
}
impl<'a> Reducer<'a> {
fn ast(&mut self, ast: &AST) -> ReducedAST {
let mut output = vec![];
for statement in ast.statements.iter() {
output.push(self.statement(statement));
}
ReducedAST(output)
}
fn statement(&mut self, stmt: &Statement) -> Stmt {
match &stmt.kind {
StatementKind::Expression(expr) => Stmt::Expr(self.expression(expr)),
StatementKind::Declaration(decl) => self.declaration(decl),
StatementKind::Import(_) => Stmt::Noop,
StatementKind::Module(modspec) => {
for statement in modspec.contents.iter() {
self.statement(statement);
}
Stmt::Noop
}
}
}
#[allow(clippy::ptr_arg)]
fn block(&mut self, block: &Block) -> Vec<Stmt> {
block.iter().map(|stmt| self.statement(stmt)).collect()
}
fn invocation_argument(&mut self, invoc: &InvocationArgument) -> Expr {
use crate::ast::InvocationArgument::*;
match invoc {
Positional(ex) => self.expression(ex),
Keyword { .. } => Expr::UnimplementedSigilValue,
Ignored => Expr::UnimplementedSigilValue,
}
}
fn expression(&mut self, expr: &Expression) -> Expr {
use crate::ast::ExpressionKind::*;
let input = &expr.kind;
match input {
NatLiteral(n) => Expr::Lit(Lit::Nat(*n)),
FloatLiteral(f) => Expr::Lit(Lit::Float(*f)),
StringLiteral(s) => Expr::Lit(Lit::StringLit(s.clone())),
BoolLiteral(b) => Expr::Lit(Lit::Bool(*b)),
BinExp(binop, lhs, rhs) => self.binop(binop, lhs, rhs),
PrefixExp(op, arg) => self.prefix(op, arg),
Value(qualified_name) => self.value(qualified_name),
Call { f, arguments } => self.reduce_call_expression(f, arguments),
TupleLiteral(exprs) => Expr::Tuple(exprs.iter().map(|e| self.expression(e)).collect()),
IfExpression {
discriminator,
body,
} => self.reduce_if_expression(deref_optional_box(discriminator), body),
Lambda { params, body, .. } => self.reduce_lambda(params, body),
NamedStruct { name, fields } => self.reduce_named_struct(name, fields),
Index { .. } => Expr::UnimplementedSigilValue,
WhileExpression { .. } => Expr::UnimplementedSigilValue,
ForExpression { .. } => Expr::UnimplementedSigilValue,
ListLiteral { .. } => Expr::UnimplementedSigilValue,
}
}
fn value(&mut self, qualified_name: &QualifiedName) -> Expr {
let Symbol {
local_name, spec, ..
} = match self.symbol_table.lookup_symbol(&qualified_name.id) {
Some(s) => s,
//TODO this causes several evaluation tests to fail, figure out what's going on here
//None => return Expr::ReductionError(format!("Symbol {:?} not found", sym_name)),
None => {
let name = qualified_name.components.last().unwrap().clone();
return Expr::Sym(name);
}
};
match spec {
SymbolSpec::RecordConstructor { .. } => Expr::ReductionError(
"AST reducer doesn't expect a RecordConstructor here".to_string(),
),
SymbolSpec::DataConstructor {
index,
arity,
type_name,
} => Expr::Constructor {
type_name: type_name.clone(),
name: local_name.clone(),
tag: *index,
arity: *arity,
},
SymbolSpec::Func(_) => Expr::Sym(local_name.clone()),
SymbolSpec::GlobalBinding => Expr::Sym(local_name.clone()), //TODO not sure if this is right, probably needs to eventually be fqsn
_ => Expr::UnimplementedSigilValue,
}
}
#[allow(clippy::ptr_arg)]
fn reduce_lambda(&mut self, params: &[FormalParam], body: &Block) -> Expr {
Expr::Func(Func::UserDefined {
name: None,
params: params.iter().map(|param| param.name.clone()).collect(),
body: self.block(body),
})
}
fn reduce_named_struct(
&mut self,
name: &QualifiedName,
fields: &[(Rc<String>, Expression)],
) -> Expr {
let symbol = match self.symbol_table.lookup_symbol(&name.id) {
Some(fqsn) => fqsn,
None => return Expr::ReductionError(format!("FQSN lookup for name {:?} failed", name)),
};
let (type_name, index, members_from_table) = match &symbol.spec {
SymbolSpec::RecordConstructor {
members,
type_name,
index,
} => (type_name.clone(), index, members),
_ => return Expr::ReductionError("Not a record constructor".to_string()),
};
let arity = members_from_table.len();
let mut args: Vec<(Rc<String>, Expr)> = fields
.iter()
.map(|(name, expr)| (name.clone(), self.expression(expr)))
.collect();
args.as_mut_slice()
.sort_unstable_by(|(name1, _), (name2, _)| name1.cmp(name2)); //arbitrary - sorting by alphabetical order
let args = args.into_iter().map(|(_, expr)| expr).collect();
//TODO make sure this sorting actually works
let f = box Expr::Constructor {
type_name,
name: symbol.local_name.clone(),
tag: *index,
arity,
};
Expr::Call { f, args }
}
fn reduce_call_expression(
&mut self,
func: &Expression,
arguments: &[InvocationArgument],
) -> Expr {
Expr::Call {
f: Box::new(self.expression(func)),
args: arguments
.iter()
.map(|arg| self.invocation_argument(arg))
.collect(),
}
}
fn reduce_if_expression(
&mut self,
discriminator: Option<&Expression>,
body: &IfExpressionBody,
) -> Expr {
let cond = Box::new(match discriminator {
Some(expr) => self.expression(expr),
None => return Expr::ReductionError("blank cond if-expr not supported".to_string()),
});
match body {
IfExpressionBody::SimpleConditional {
then_case,
else_case,
} => {
let then_clause = self.block(then_case);
let else_clause = match else_case.as_ref() {
None => vec![],
Some(stmts) => self.block(stmts),
};
Expr::Conditional {
cond,
then_clause,
else_clause,
}
}
IfExpressionBody::SimplePatternMatch {
pattern,
then_case,
else_case,
} => {
let then_clause = self.block(then_case);
let else_clause = match else_case.as_ref() {
None => vec![],
Some(stmts) => self.block(stmts),
};
let alternatives = vec![
pattern.to_alternative(then_clause, self.symbol_table),
Alternative {
matchable: Subpattern {
tag: None,
subpatterns: vec![],
bound_vars: vec![],
guard: None,
},
item: else_clause,
},
];
Expression::CaseMatch { cond, alternatives }
},
IfExpressionBody::CondList(ref condition_arms) => {
let mut alternatives = vec![];
for arm in condition_arms {
match arm.condition {
Condition::Expression(ref _expr) => return Expr::UnimplementedSigilValue,
Condition::Pattern(ref p) => {
let item = self.block(&arm.body);
let alt = p.to_alternative(item, self.symbol_table);
alternatives.push(alt);
}
Condition::TruncatedOp(_, _) => return Expr::UnimplementedSigilValue,
Condition::Else => return Expr::UnimplementedSigilValue,
}
}
Expr::CaseMatch { cond, alternatives }
}
}
}
fn binop(&mut self, binop: &BinOp, lhs: &Expression, rhs: &Expression) -> Expr {
let operation = Builtin::from_str(binop.sigil()).ok();
match operation {
Some(Builtin::Assignment) => Expr::Assign {
val: Box::new(self.expression(&*lhs)),
expr: Box::new(self.expression(&*rhs)),
},
Some(op) => {
let f = Box::new(Expr::Func(Func::BuiltIn(op)));
Expr::Call {
f,
args: vec![self.expression(&*lhs), self.expression(&*rhs)],
}
}
None => {
//TODO handle a user-defined operation
Expr::UnimplementedSigilValue
}
}
}
fn prefix(&mut self, prefix: &PrefixOp, arg: &Expression) -> Expr {
let builtin: Option<Builtin> = TryFrom::try_from(prefix).ok();
match builtin {
Some(op) => {
let f = Box::new(Expr::Func(Func::BuiltIn(op)));
Expr::Call {
f,
args: vec![self.expression(arg)],
}
}
None => {
//TODO need this for custom prefix ops
Expr::UnimplementedSigilValue
}
}
}
fn declaration(&mut self, declaration: &Declaration) -> Stmt {
use self::Declaration::*;
match declaration {
Binding {
name,
constant,
expr,
..
} => Stmt::Binding {
name: name.clone(),
constant: *constant,
expr: self.expression(expr),
},
FuncDecl(Signature { name, params, .. }, statements) => Stmt::PreBinding {
name: name.clone(),
func: Func::UserDefined {
name: Some(name.clone()),
params: params.iter().map(|param| param.name.clone()).collect(),
body: self.block(statements),
},
},
TypeDecl { .. } => Stmt::Noop,
TypeAlias { .. } => Stmt::Noop,
Interface { .. } => Stmt::Noop,
Impl { .. } => Stmt::Expr(Expr::UnimplementedSigilValue),
Annotation { .. } => Stmt::Noop,
_ => Stmt::Expr(Expr::UnimplementedSigilValue),
}
}
}
fn handle_symbol(
symbol: Option<&Symbol>,
inner_patterns: &[Pattern],
symbol_table: &SymbolTable,
) -> Subpattern {
use self::Pattern::*;
let tag = symbol.map(|symbol| match symbol.spec {
SymbolSpec::DataConstructor { index, .. } => index,
_ => {
panic!("Symbol is not a data constructor - this should've been caught in type-checking")
}
});
let bound_vars = inner_patterns
.iter()
.map(|p| match p {
VarOrName(qualified_name) => {
let symbol_exists = symbol_table.lookup_symbol(&qualified_name.id).is_some();
if symbol_exists {
None
} else {
let QualifiedName { components, .. } = qualified_name;
if components.len() == 1 {
Some(components[0].clone())
} else {
panic!("Bad variable name in pattern");
}
}
}
_ => None,
})
.collect();
let subpatterns = inner_patterns
.iter()
.map(|p| match p {
Ignored => None,
VarOrName(_) => None,
Literal(other) => Some(other.to_subpattern(symbol_table)),
tp @ TuplePattern(_) => Some(tp.to_subpattern(symbol_table)),
ts @ TupleStruct(_, _) => Some(ts.to_subpattern(symbol_table)),
Record(..) => unimplemented!(),
})
.collect();
let guard = None;
/*
let guard_equality_exprs: Vec<Expr> = subpatterns.iter().map(|p| match p {
Literal(lit) => match lit {
_ => unimplemented!()
},
_ => unimplemented!()
}).collect();
*/
Subpattern {
tag,
subpatterns,
guard,
bound_vars,
}
}
impl Pattern {
fn to_alternative(&self, item: Vec<Stmt>, symbol_table: &SymbolTable) -> Alternative {
let s = self.to_subpattern(symbol_table);
Alternative {
matchable: Subpattern {
tag: s.tag,
subpatterns: s.subpatterns,
bound_vars: s.bound_vars,
guard: s.guard,
},
item,
}
}
fn to_subpattern(&self, symbol_table: &SymbolTable) -> Subpattern {
use self::Pattern::*;
match self {
TupleStruct(QualifiedName { components, id }, inner_patterns) => {
match symbol_table.lookup_symbol(id) {
Some(symbol) => handle_symbol(Some(symbol), inner_patterns, symbol_table),
None => panic!("Symbol {:?} not found", components),
}
}
TuplePattern(inner_patterns) => handle_symbol(None, inner_patterns, symbol_table),
Record(_name, _pairs) => {
unimplemented!()
}
Ignored => Subpattern {
tag: None,
subpatterns: vec![],
guard: None,
bound_vars: vec![],
},
Literal(lit) => lit.to_subpattern(symbol_table),
VarOrName(QualifiedName { components, id }) => {
// if symbol is Some, treat this as a symbol pattern. If it's None, treat it
// as a variable.
match symbol_table.lookup_symbol(id) {
Some(symbol) => handle_symbol(Some(symbol), &[], symbol_table),
None => {
println!("Components: {:?}", components);
let name = if components.len() == 1 {
components[0].clone()
} else {
panic!("check this line of code yo");
};
Subpattern {
tag: None,
subpatterns: vec![],
guard: None,
bound_vars: vec![Some(name)],
}
}
}
}
}
}
}
impl PatternLiteral {
fn to_subpattern(&self, _symbol_table: &SymbolTable) -> Subpattern {
use self::PatternLiteral::*;
match self {
NumPattern { neg, num } => {
let comparison = Expr::Lit(match (neg, num) {
(false, ExpressionKind::NatLiteral(n)) => Lit::Nat(*n),
(false, ExpressionKind::FloatLiteral(f)) => Lit::Float(*f),
(true, ExpressionKind::NatLiteral(n)) => Lit::Int(-(*n as i64)),
(true, ExpressionKind::FloatLiteral(f)) => Lit::Float(-f),
_ => panic!("This should never happen"),
});
let guard = Some(Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Builtin::Equality))),
args: vec![comparison, Expr::ConditionalTargetSigilValue],
});
Subpattern {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
}
}
StringPattern(s) => {
let guard = Some(Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Builtin::Equality))),
args: vec![
Expr::Lit(Lit::StringLit(s.clone())),
Expr::ConditionalTargetSigilValue,
],
});
Subpattern {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
}
}
BoolPattern(b) => {
let guard = Some(if *b {
Expr::ConditionalTargetSigilValue
} else {
Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Builtin::BooleanNot))),
args: vec![Expr::ConditionalTargetSigilValue],
}
});
Subpattern {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
}
}
}
}
}

View File

@ -1,98 +0,0 @@
#![allow(clippy::enum_variant_names)]
use crate::builtin::Builtin;
use std::rc::Rc;
#[derive(Debug)]
pub struct ReducedAST(pub Vec<Stmt>);
#[derive(Debug, Clone)]
pub enum Stmt {
PreBinding {
name: Rc<String>,
func: Func,
},
Binding {
name: Rc<String>,
constant: bool,
expr: Expr,
},
Expr(Expr),
Noop,
}
#[derive(Debug, Clone)]
pub enum Expr {
Lit(Lit),
Sym(Rc<String>), //a Sym is anything that can be looked up by name at runtime - i.e. a function or variable address
Tuple(Vec<Expr>),
Func(Func),
Constructor {
type_name: Rc<String>,
name: Rc<String>,
tag: usize,
arity: usize, // n.b. arity here is always the value from the symbol table - if it doesn't match what it's being called with, that's an eval error, eval will handle it
},
Call {
f: Box<Expr>,
args: Vec<Expr>,
},
Assign {
val: Box<Expr>, //TODO this probably can't be a val
expr: Box<Expr>,
},
Conditional {
cond: Box<Expr>,
then_clause: Vec<Stmt>,
else_clause: Vec<Stmt>,
},
ConditionalTargetSigilValue,
CaseMatch {
cond: Box<Expr>,
alternatives: Vec<Alternative>,
},
UnimplementedSigilValue,
ReductionError(String),
}
impl Expr {
// The unit value is an empty tuple
pub fn unit() -> Expr {
Expr::Tuple(vec![])
}
}
pub type BoundVars = Vec<Option<Rc<String>>>; //remember that order matters here
#[derive(Debug, Clone)]
pub struct Alternative {
pub matchable: Subpattern,
pub item: Vec<Stmt>,
}
#[derive(Debug, Clone)]
pub struct Subpattern {
pub tag: Option<usize>,
pub subpatterns: Vec<Option<Subpattern>>,
pub bound_vars: BoundVars,
pub guard: Option<Expr>,
}
#[derive(Debug, Clone)]
pub enum Lit {
Nat(u64),
Int(i64),
Float(f64),
Bool(bool),
StringLit(Rc<String>),
}
#[derive(Debug, Clone)]
pub enum Func {
BuiltIn(Builtin),
UserDefined {
name: Option<Rc<String>>,
params: Vec<Rc<String>>,
body: Vec<Stmt>,
},
}