Add rustfmt.toml and format tree walk evaluator:wq

This commit is contained in:
Greg Shuflin 2021-10-27 00:02:12 -07:00
parent 0c6d2be95a
commit a3463f5519
3 changed files with 354 additions and 326 deletions

7
rustfmt.toml Normal file
View File

@ -0,0 +1,7 @@
max_width = 110
use_small_heuristics = "max"
imports_indent = "block"
imports_granularity = "crate"
group_imports = "stdexternalcrate"

View File

@ -1,12 +1,14 @@
use crate::reduced_ir::{ReducedIR, Expression, Lookup, Callable, FunctionDefinition, Statement, Literal, Alternative, Pattern};
use crate::symbol_table::{DefId};
use crate::util::ScopeStack;
use crate::builtin::Builtin;
use crate::typechecking::TypeId;
use std::{convert::From, fmt::Write, rc::Rc};
use std::fmt::Write;
use std::rc::Rc;
use std::convert::From;
use crate::{
builtin::Builtin,
reduced_ir::{
Alternative, Callable, Expression, FunctionDefinition, Literal, Lookup, Pattern, ReducedIR, Statement,
},
symbol_table::DefId,
typechecking::TypeId,
util::ScopeStack,
};
mod test;
@ -14,14 +16,14 @@ type EvalResult<T> = Result<T, RuntimeError>;
#[derive(Debug)]
pub struct State<'a> {
environments: ScopeStack<'a, Memory, MemoryValue>,
environments: ScopeStack<'a, Memory, MemoryValue>,
}
//TODO - eh, I dunno, maybe it doesn't matter exactly how memory works in the tree-walking
//evaluator
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
enum Memory {
Index(u32)
Index(u32),
}
// This is for function param lookups, and is a hack
@ -39,22 +41,18 @@ impl From<&DefId> for Memory {
#[derive(Debug)]
struct RuntimeError {
msg: String
msg: String,
}
impl From<String> for RuntimeError {
fn from(msg: String) -> Self {
Self {
msg
}
Self { msg }
}
}
impl From<&str> for RuntimeError {
fn from(msg: &str) -> Self {
Self {
msg: msg.to_string(),
}
Self { msg: msg.to_string() }
}
}
@ -65,17 +63,17 @@ impl RuntimeError {
}
}
fn paren_wrapped(terms: impl Iterator<Item=String>) -> String {
let mut buf = String::new();
write!(buf, "(").unwrap();
for term in terms.map(Some).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e).unwrap(),
None => write!(buf, ", ").unwrap(),
};
}
write!(buf, ")").unwrap();
buf
fn paren_wrapped(terms: impl Iterator<Item = String>) -> String {
let mut buf = String::new();
write!(buf, "(").unwrap();
for term in terms.map(Some).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e).unwrap(),
None => write!(buf, ", ").unwrap(),
};
}
write!(buf, ")").unwrap();
buf
}
/// Anything that can be stored in memory; that is, a function definition, or a fully-evaluated
@ -92,7 +90,6 @@ impl From<Primitive> for MemoryValue {
}
}
impl MemoryValue {
fn to_repl(&self) -> String {
match self {
@ -126,26 +123,23 @@ enum Primitive {
Tuple(Vec<Primitive>),
Literal(Literal),
Callable(Callable),
Object {
type_id: TypeId,
tag: u32,
items: Vec<Primitive>
},
Object { type_id: TypeId, tag: u32, items: Vec<Primitive> },
}
impl Primitive {
fn to_repl(&self) -> String {
match self {
Primitive::Object { type_id, items, .. } if items.is_empty() => type_id.local_name().to_string(),
Primitive::Object { type_id, items, .. } =>
format!("{}{}", type_id.local_name(), paren_wrapped(items.iter().map(|item| item.to_repl()))),
Primitive::Object { type_id, items, .. } => {
format!("{}{}", type_id.local_name(), paren_wrapped(items.iter().map(|item| item.to_repl())))
}
Primitive::Literal(lit) => match lit {
Literal::Nat(n) => format!("{}", n),
Literal::Int(i) => format!("{}", i),
Literal::Float(f) => format!("{}", f),
Literal::Bool(b) => format!("{}", b),
Literal::StringLit(s) => format!("\"{}\"", s),
}
},
Primitive::Tuple(terms) => paren_wrapped(terms.iter().map(|x| x.to_repl())),
Primitive::Callable(..) => "<some-callable>".to_string(),
}
@ -164,9 +158,7 @@ impl From<Literal> for Primitive {
impl<'a> State<'a> {
pub fn new() -> Self {
Self {
environments: ScopeStack::new(Some("global".to_string()))
}
Self { environments: ScopeStack::new(Some("global".to_string())) }
}
pub fn evaluate(&mut self, reduced: ReducedIR, repl: bool) -> Vec<Result<String, String>> {
@ -179,9 +171,7 @@ impl<'a> State<'a> {
for statement in reduced.entrypoint.into_iter() {
match self.statement(statement) {
Ok(Some(output)) if repl => {
acc.push(Ok(output.to_repl()))
},
Ok(Some(output)) if repl => acc.push(Ok(output.to_repl())),
Ok(_) => (),
Err(error) => {
acc.push(Err(error.msg));
@ -200,11 +190,7 @@ impl<'a> State<'a> {
ret = Some(prim);
}
}
Ok(if let Some(ret) = ret {
ret
} else {
self.expression(Expression::unit())?
})
Ok(if let Some(ret) = ret { ret } else { self.expression(Expression::unit())? })
}
fn statement(&mut self, stmt: Statement) -> EvalResult<Option<MemoryValue>> {
@ -214,7 +200,7 @@ impl<'a> State<'a> {
let evaluated = self.expression(expr)?;
self.environments.insert(id.into(), evaluated.into());
Ok(None)
},
}
Statement::Expression(expr) => {
let evaluated = self.expression(expr)?;
Ok(Some(evaluated.into()))
@ -222,252 +208,286 @@ impl<'a> State<'a> {
}
}
fn expression(&mut self, expression: Expression) -> EvalResult<Primitive> {
Ok(match expression {
Expression::Literal(lit) => Primitive::Literal(lit),
Expression::Tuple(items) => Primitive::Tuple(items.into_iter().map(|expr| self.expression(expr)).collect::<EvalResult<Vec<Primitive>>>()?),
Expression::Lookup(kind) => match kind {
Lookup::Function(ref id) => {
let mem = id.into();
match self.environments.lookup(&mem) {
// This just checks that the function exists in "memory" by ID, we don't
// actually retrieve it until `apply_function()`
Some(MemoryValue::Function(_)) => Primitive::Callable(Callable::UserDefined(id.clone())),
x => return Err(format!("Function not found for id: {} : {:?}", id, x).into()),
}
},
Lookup::Param(n) => {
let mem = n.into();
match self.environments.lookup(&mem) {
Some(MemoryValue::Primitive(prim)) => prim.clone(),
e => return Err(format!("Param lookup error, got {:?}", e).into()),
}
},
Lookup::LocalVar(ref id) | Lookup::GlobalVar(ref id) => {
let mem = id.into();
match self.environments.lookup(&mem) {
Some(MemoryValue::Primitive(expr)) => expr.clone(),
_ => return Err(format!("Nothing found for local/gloval variable lookup {}", id).into()),
}
},
},
Expression::Assign { ref lval, box rval } => {
let mem = lval.into();
let evaluated = self.expression(rval)?;
self.environments.insert(mem, MemoryValue::Primitive(evaluated));
Primitive::unit()
},
Expression::Call { box f, args } => self.call_expression(f, args)?,
Expression::Callable(Callable::DataConstructor { type_id, arity, tag }) if arity == 0 => Primitive::Object {
type_id, tag, items: vec![]
},
Expression::Callable(func) => Primitive::Callable(func),
Expression::Conditional { box cond, then_clause, else_clause } => {
let cond = self.expression(cond)?;
match cond {
Primitive::Literal(Literal::Bool(true)) => self.block(then_clause)?,
Primitive::Literal(Literal::Bool(false)) => self.block(else_clause)?,
v => return Err(format!("Non-boolean value {:?} in if-statement", v).into())
}
},
Expression::CaseMatch { box cond, alternatives } => self.case_match_expression(cond, alternatives)?,
Expression::ReductionError(e) => return Err(e.into()),
})
}
fn expression(&mut self, expression: Expression) -> EvalResult<Primitive> {
Ok(match expression {
Expression::Literal(lit) => Primitive::Literal(lit),
Expression::Tuple(items) => Primitive::Tuple(
items
.into_iter()
.map(|expr| self.expression(expr))
.collect::<EvalResult<Vec<Primitive>>>()?,
),
Expression::Lookup(kind) => match kind {
Lookup::Function(ref id) => {
let mem = id.into();
match self.environments.lookup(&mem) {
// This just checks that the function exists in "memory" by ID, we don't
// actually retrieve it until `apply_function()`
Some(MemoryValue::Function(_)) => {
Primitive::Callable(Callable::UserDefined(id.clone()))
}
x => return Err(format!("Function not found for id: {} : {:?}", id, x).into()),
}
}
Lookup::Param(n) => {
let mem = n.into();
match self.environments.lookup(&mem) {
Some(MemoryValue::Primitive(prim)) => prim.clone(),
e => return Err(format!("Param lookup error, got {:?}", e).into()),
}
}
Lookup::LocalVar(ref id) | Lookup::GlobalVar(ref id) => {
let mem = id.into();
match self.environments.lookup(&mem) {
Some(MemoryValue::Primitive(expr)) => expr.clone(),
_ => {
return Err(
format!("Nothing found for local/gloval variable lookup {}", id).into()
)
}
}
}
},
Expression::Assign { ref lval, box rval } => {
let mem = lval.into();
let evaluated = self.expression(rval)?;
self.environments.insert(mem, MemoryValue::Primitive(evaluated));
Primitive::unit()
}
Expression::Call { box f, args } => self.call_expression(f, args)?,
Expression::Callable(Callable::DataConstructor { type_id, arity, tag }) if arity == 0 => {
Primitive::Object { type_id, tag, items: vec![] }
}
Expression::Callable(func) => Primitive::Callable(func),
Expression::Conditional { box cond, then_clause, else_clause } => {
let cond = self.expression(cond)?;
match cond {
Primitive::Literal(Literal::Bool(true)) => self.block(then_clause)?,
Primitive::Literal(Literal::Bool(false)) => self.block(else_clause)?,
v => return Err(format!("Non-boolean value {:?} in if-statement", v).into()),
}
}
Expression::CaseMatch { box cond, alternatives } => {
self.case_match_expression(cond, alternatives)?
}
Expression::ReductionError(e) => return Err(e.into()),
})
}
fn case_match_expression(&mut self, cond: Expression, alternatives: Vec<Alternative>) -> EvalResult<Primitive> {
fn matches(scrut: &Primitive, pat: &Pattern, scope: &mut ScopeStack<Memory, MemoryValue>) -> bool {
match pat {
Pattern::Ignored => true,
Pattern::Binding(ref def_id) => {
let mem = def_id.into();
scope.insert(mem, MemoryValue::Primitive(scrut.clone())); //TODO make sure this doesn't cause problems with nesting
true
},
Pattern::Literal(pat_literal) => if let Primitive::Literal(scrut_literal) = scrut {
pat_literal == scrut_literal
} else {
false
},
Pattern::Tuple { subpatterns, tag } => match tag {
None => match scrut {
Primitive::Tuple(items) if items.len() == subpatterns.len() =>
items.iter().zip(subpatterns.iter()).all(|(item, subpat)| matches(item, subpat, scope)),
_ => false //TODO should be a type error
},
Some(pattern_tag) => match scrut {
//TODO should test type_ids for runtime type checking, once those work
Primitive::Object { tag, items, .. } if tag == pattern_tag && items.len() == subpatterns.len() => {
items.iter().zip(subpatterns.iter()).all(|(item, subpat)| matches(item, subpat, scope))
}
_ => false
}
}
}
}
let cond = self.expression(cond)?;
fn case_match_expression(
&mut self,
cond: Expression,
alternatives: Vec<Alternative>,
) -> EvalResult<Primitive> {
fn matches(scrut: &Primitive, pat: &Pattern, scope: &mut ScopeStack<Memory, MemoryValue>) -> bool {
match pat {
Pattern::Ignored => true,
Pattern::Binding(ref def_id) => {
let mem = def_id.into();
scope.insert(mem, MemoryValue::Primitive(scrut.clone())); //TODO make sure this doesn't cause problems with nesting
true
}
Pattern::Literal(pat_literal) => {
if let Primitive::Literal(scrut_literal) = scrut {
pat_literal == scrut_literal
} else {
false
}
}
Pattern::Tuple { subpatterns, tag } => match tag {
None => match scrut {
Primitive::Tuple(items) if items.len() == subpatterns.len() => items
.iter()
.zip(subpatterns.iter())
.all(|(item, subpat)| matches(item, subpat, scope)),
_ => false, //TODO should be a type error
},
Some(pattern_tag) => match scrut {
//TODO should test type_ids for runtime type checking, once those work
Primitive::Object { tag, items, .. }
if tag == pattern_tag && items.len() == subpatterns.len() =>
{
items
.iter()
.zip(subpatterns.iter())
.all(|(item, subpat)| matches(item, subpat, scope))
}
_ => false,
},
},
}
}
let cond = self.expression(cond)?;
for alt in alternatives.into_iter() {
let mut new_scope = self.environments.new_scope(None);
if matches(&cond, &alt.pattern, &mut new_scope) {
let mut new_state = State {
environments: new_scope
};
for alt in alternatives.into_iter() {
let mut new_scope = self.environments.new_scope(None);
if matches(&cond, &alt.pattern, &mut new_scope) {
let mut new_state = State { environments: new_scope };
return new_state.block(alt.item)
}
}
Err("No valid match in match expression".into())
}
return new_state.block(alt.item);
}
}
Err("No valid match in match expression".into())
}
fn call_expression(&mut self, f: Expression, args: Vec<Expression>) -> EvalResult<Primitive> {
let func = match self.expression(f)? {
Primitive::Callable(func) => func,
other => return Err(format!("Trying to call non-function value: {:?}", other).into()),
};
match func {
Callable::Builtin(builtin) => self.apply_builtin(builtin, args),
Callable::UserDefined(def_id) => {
let mem = (&def_id).into();
match self.environments.lookup(&mem) {
Some(MemoryValue::Function(FunctionDefinition { body })) => {
let body = body.clone(); //TODO ideally this clone would not happen
self.apply_function(body, args)
},
e => Err(format!("Error looking up function with id {}: {:?}", def_id, e).into())
}
},
Callable::Lambda { arity, body } => {
if arity as usize != args.len() {
return Err(format!("Lambda expression requries {} arguments, only {} provided", arity, args.len()).into());
}
self.apply_function(body, args)
}
Callable::DataConstructor { type_id, arity, tag } => {
if arity as usize != args.len() {
return Err(format!("Constructor expression requries {} arguments, only {} provided", arity, args.len()).into());
}
fn call_expression(&mut self, f: Expression, args: Vec<Expression>) -> EvalResult<Primitive> {
let func = match self.expression(f)? {
Primitive::Callable(func) => func,
other => return Err(format!("Trying to call non-function value: {:?}", other).into()),
};
match func {
Callable::Builtin(builtin) => self.apply_builtin(builtin, args),
Callable::UserDefined(def_id) => {
let mem = (&def_id).into();
match self.environments.lookup(&mem) {
Some(MemoryValue::Function(FunctionDefinition { body })) => {
let body = body.clone(); //TODO ideally this clone would not happen
self.apply_function(body, args)
}
e => Err(format!("Error looking up function with id {}: {:?}", def_id, e).into()),
}
}
Callable::Lambda { arity, body } => {
if arity as usize != args.len() {
return Err(format!(
"Lambda expression requries {} arguments, only {} provided",
arity,
args.len()
)
.into());
}
self.apply_function(body, args)
}
Callable::DataConstructor { type_id, arity, tag } => {
if arity as usize != args.len() {
return Err(format!(
"Constructor expression requries {} arguments, only {} provided",
arity,
args.len()
)
.into());
}
let mut evaluated_args: Vec<Primitive> = vec![];
for arg in args.into_iter() {
evaluated_args.push(self.expression(arg)?);
}
Ok(Primitive::Object {
type_id,
tag,
items: evaluated_args
})
}
Callable::RecordConstructor { type_id: _, tag: _ } => {
unimplemented!()
}
}
}
let mut evaluated_args: Vec<Primitive> = vec![];
for arg in args.into_iter() {
evaluated_args.push(self.expression(arg)?);
}
Ok(Primitive::Object { type_id, tag, items: evaluated_args })
}
Callable::RecordConstructor { type_id: _, tag: _ } => {
unimplemented!()
}
}
}
fn apply_builtin(&mut self, builtin: Builtin, args: Vec<Expression>) -> EvalResult<Primitive> {
use Builtin::*;
use Literal::*;
use Primitive::Literal as Lit;
fn apply_builtin(&mut self, builtin: Builtin, args: Vec<Expression>) -> EvalResult<Primitive> {
use Builtin::*;
use Literal::*;
use Primitive::Literal as Lit;
let evaled_args: EvalResult<Vec<Primitive>> =
args.into_iter().map(|arg| self.expression(arg)).collect();
let evaled_args = evaled_args?;
let evaled_args: EvalResult<Vec<Primitive>> =
args.into_iter().map(|arg| self.expression(arg)).collect();
let evaled_args = evaled_args?;
Ok(match (builtin, evaled_args.as_slice()) {
(FieldAccess, /*&[Node::PrimObject { .. }]*/ _) => {
return Err("Field access unimplemented".into());
}
/* builtin functions */
(IOPrint, &[ref anything]) => {
print!("{}", anything.to_repl());
Primitive::Tuple(vec![])
},
(IOPrintLn, &[ref anything]) => {
print!("{}", anything.to_repl());
Primitive::Tuple(vec![])
},
(IOGetLine, &[]) => {
let mut buf = String::new();
std::io::stdin().read_line(&mut buf).expect("Error readling line in 'getline'");
StringLit(Rc::new(buf.trim().to_string())).into()
},
/* Binops */
(binop, &[ref lhs, ref rhs]) => match (binop, lhs, rhs) {
// TODO need a better way of handling these literals
(Add, Lit(Nat(l)), Lit(Nat(r))) => Nat(l + r).into(),
(Add, Lit(Int(l)), Lit(Int(r))) => Int(l + r).into(),
(Add, Lit(Nat(l)), Lit(Int(r))) => Int((*l as i64) + (*r as i64)).into(),
(Add, Lit(Int(l)), Lit(Nat(r))) => Int((*l as i64) + (*r as i64)).into(),
(Concatenate, Lit(StringLit(ref s1)), Lit(StringLit(ref s2))) => StringLit(Rc::new(format!("{}{}", s1, s2))).into(),
(Subtract, Lit(Nat(l)), Lit(Nat(r))) => Nat(l - r).into(),
(Multiply, Lit(Nat(l)), Lit(Nat(r))) => Nat(l * r).into(),
(Divide, Lit(Nat(l)), Lit(Nat(r))) => Float((*l as f64)/ (*r as f64)).into(),
(Quotient, Lit(Nat(l)), Lit(Nat(r))) => if *r == 0 {
return Err("Divide-by-zero error".into());
} else {
Nat(l / r).into()
},
(Modulo, Lit(Nat(l)), Lit(Nat(r))) => Nat(l % r).into(),
(Exponentiation, Lit(Nat(l)), Lit(Nat(r))) => Nat(l ^ r).into(),
(BitwiseAnd, Lit(Nat(l)), Lit(Nat(r))) => Nat(l & r).into(),
(BitwiseOr, Lit(Nat(l)), Lit(Nat(r))) => Nat(l | r).into(),
Ok(match (builtin, evaled_args.as_slice()) {
(FieldAccess, /*&[Node::PrimObject { .. }]*/ _) => {
return Err("Field access unimplemented".into());
}
/* builtin functions */
(IOPrint, &[ref anything]) => {
print!("{}", anything.to_repl());
Primitive::Tuple(vec![])
}
(IOPrintLn, &[ref anything]) => {
print!("{}", anything.to_repl());
Primitive::Tuple(vec![])
}
(IOGetLine, &[]) => {
let mut buf = String::new();
std::io::stdin().read_line(&mut buf).expect("Error readling line in 'getline'");
StringLit(Rc::new(buf.trim().to_string())).into()
}
/* Binops */
(binop, &[ref lhs, ref rhs]) => match (binop, lhs, rhs) {
// TODO need a better way of handling these literals
(Add, Lit(Nat(l)), Lit(Nat(r))) => Nat(l + r).into(),
(Add, Lit(Int(l)), Lit(Int(r))) => Int(l + r).into(),
(Add, Lit(Nat(l)), Lit(Int(r))) => Int((*l as i64) + (*r as i64)).into(),
(Add, Lit(Int(l)), Lit(Nat(r))) => Int((*l as i64) + (*r as i64)).into(),
(Concatenate, Lit(StringLit(ref s1)), Lit(StringLit(ref s2))) => {
StringLit(Rc::new(format!("{}{}", s1, s2))).into()
}
(Subtract, Lit(Nat(l)), Lit(Nat(r))) => Nat(l - r).into(),
(Multiply, Lit(Nat(l)), Lit(Nat(r))) => Nat(l * r).into(),
(Divide, Lit(Nat(l)), Lit(Nat(r))) => Float((*l as f64) / (*r as f64)).into(),
(Quotient, Lit(Nat(l)), Lit(Nat(r))) => {
if *r == 0 {
return Err("Divide-by-zero error".into());
} else {
Nat(l / r).into()
}
}
(Modulo, Lit(Nat(l)), Lit(Nat(r))) => Nat(l % r).into(),
(Exponentiation, Lit(Nat(l)), Lit(Nat(r))) => Nat(l ^ r).into(),
(BitwiseAnd, Lit(Nat(l)), Lit(Nat(r))) => Nat(l & r).into(),
(BitwiseOr, Lit(Nat(l)), Lit(Nat(r))) => Nat(l | r).into(),
/* comparisons */
(Equality, Lit(Nat(l)), Lit(Nat(r))) => Bool(l == r).into(),
(Equality, Lit(Int(l)), Lit(Int(r))) => Bool(l == r).into(),
(Equality, Lit(Float(l)), Lit(Float(r))) => Bool(l == r).into(),
(Equality, Lit(Bool(l)), Lit(Bool(r))) => Bool(l == r).into(),
(Equality, Lit(StringLit(ref l)), Lit(StringLit(ref r))) => Bool(l == r).into(),
/* comparisons */
(Equality, Lit(Nat(l)), Lit(Nat(r))) => Bool(l == r).into(),
(Equality, Lit(Int(l)), Lit(Int(r))) => Bool(l == r).into(),
(Equality, Lit(Float(l)), Lit(Float(r))) => Bool(l == r).into(),
(Equality, Lit(Bool(l)), Lit(Bool(r))) => Bool(l == r).into(),
(Equality, Lit(StringLit(ref l)), Lit(StringLit(ref r))) => Bool(l == r).into(),
(LessThan, Lit(Nat(l)), Lit(Nat(r))) => Bool(l < r).into(),
(LessThan, Lit(Int(l)), Lit(Int(r))) => Bool(l < r).into(),
(LessThan, Lit(Float(l)), Lit(Float(r))) => Bool(l < r).into(),
(LessThan, Lit(Nat(l)), Lit(Nat(r))) => Bool(l < r).into(),
(LessThan, Lit(Int(l)), Lit(Int(r))) => Bool(l < r).into(),
(LessThan, Lit(Float(l)), Lit(Float(r))) => Bool(l < r).into(),
(LessThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Bool(l <= r).into(),
(LessThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Bool(l <= r).into(),
(LessThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Bool(l <= r).into(),
(LessThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Bool(l <= r).into(),
(LessThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Bool(l <= r).into(),
(LessThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Bool(l <= r).into(),
(GreaterThan, Lit(Nat(l)), Lit(Nat(r))) => Bool(l > r).into(),
(GreaterThan, Lit(Int(l)), Lit(Int(r))) => Bool(l > r).into(),
(GreaterThan, Lit(Float(l)), Lit(Float(r))) => Bool(l > r).into(),
(GreaterThan, Lit(Nat(l)), Lit(Nat(r))) => Bool(l > r).into(),
(GreaterThan, Lit(Int(l)), Lit(Int(r))) => Bool(l > r).into(),
(GreaterThan, Lit(Float(l)), Lit(Float(r))) => Bool(l > r).into(),
(GreaterThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Bool(l >= r).into(),
(GreaterThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Bool(l >= r).into(),
(GreaterThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Bool(l >= r).into(),
(GreaterThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Bool(l >= r).into(),
(GreaterThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Bool(l >= r).into(),
(GreaterThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Bool(l >= r).into(),
(binop, lhs, rhs) => return Err(format!("Invalid binop expression {:?} {:?} {:?}", lhs, binop, rhs).into()),
},
(prefix, &[ref arg]) => match (prefix, arg) {
(BooleanNot, Lit(Bool(true))) => Bool(false),
(BooleanNot, Lit(Bool(false))) => Bool(true),
(Negate, Lit(Nat(n))) => Int(-(*n as i64)),
(Negate, Lit(Int(n))) => Int(-(*n as i64)),
(Negate, Lit(Float(f))) => Float(-(*f as f64)),
(Increment, Lit(Int(n))) => Int(*n),
(Increment, Lit(Nat(n))) => Nat(*n),
_ => return Err("No valid prefix op".into())
}.into(),
(x, args) => return Err(format!("bad or unimplemented builtin {:?} | {:?}", x, args).into()),
})
}
(binop, lhs, rhs) => {
return Err(format!("Invalid binop expression {:?} {:?} {:?}", lhs, binop, rhs).into())
}
},
(prefix, &[ref arg]) => match (prefix, arg) {
(BooleanNot, Lit(Bool(true))) => Bool(false),
(BooleanNot, Lit(Bool(false))) => Bool(true),
(Negate, Lit(Nat(n))) => Int(-(*n as i64)),
(Negate, Lit(Int(n))) => Int(-(*n as i64)),
(Negate, Lit(Float(f))) => Float(-(*f as f64)),
(Increment, Lit(Int(n))) => Int(*n),
(Increment, Lit(Nat(n))) => Nat(*n),
_ => return Err("No valid prefix op".into()),
}
.into(),
(x, args) => return Err(format!("bad or unimplemented builtin {:?} | {:?}", x, args).into()),
})
}
fn apply_function(&mut self, body: Vec<Statement>, args: Vec<Expression>) -> EvalResult<Primitive> {
let mut evaluated_args: Vec<Primitive> = vec![];
for arg in args.into_iter() {
evaluated_args.push(self.expression(arg)?);
}
fn apply_function(&mut self, body: Vec<Statement>, args: Vec<Expression>) -> EvalResult<Primitive> {
let mut evaluated_args: Vec<Primitive> = vec![];
for arg in args.into_iter() {
evaluated_args.push(self.expression(arg)?);
}
let mut frame_state = State {
environments: self.environments.new_scope(None)
};
let mut frame_state = State { environments: self.environments.new_scope(None) };
for (n, evaled) in evaluated_args.into_iter().enumerate() {
let n = n as u8;
let mem = n.into();
frame_state.environments.insert(mem, MemoryValue::Primitive(evaled));
}
for (n, evaled) in evaluated_args.into_iter().enumerate() {
let n = n as u8;
let mem = n.into();
frame_state.environments.insert(mem, MemoryValue::Primitive(evaled));
}
frame_state.block(body)
}
frame_state.block(body)
}
}

View File

@ -1,20 +1,19 @@
#![cfg(test)]
use test_case::test_case;
use crate::symbol_table::SymbolTable;
use crate::tree_walk_eval::State;
use crate::{symbol_table::SymbolTable, tree_walk_eval::State};
fn evaluate_input(input: &str) -> Result<String, String> {
let ast = crate::util::quick_ast(input);
let mut symbol_table = SymbolTable::new();
symbol_table.process_ast(&ast).unwrap();
let reduced_ir = crate::reduced_ir::reduce(&ast, &symbol_table);
reduced_ir.debug(&symbol_table);
println!("========");
symbol_table.debug();
let mut state = State::new();
let mut outputs = state.evaluate(reduced_ir, true);
outputs.pop().unwrap()
let ast = crate::util::quick_ast(input);
let mut symbol_table = SymbolTable::new();
symbol_table.process_ast(&ast).unwrap();
let reduced_ir = crate::reduced_ir::reduce(&ast, &symbol_table);
reduced_ir.debug(&symbol_table);
println!("========");
symbol_table.debug();
let mut state = State::new();
let mut outputs = state.evaluate(reduced_ir, true);
outputs.pop().unwrap()
}
fn eval_assert(input: &str, expected: &str) {
@ -23,26 +22,26 @@ fn eval_assert(input: &str, expected: &str) {
#[test]
fn test_basic_eval() {
eval_assert("1 + 2", "3");
eval_assert("let mut a = 1; a = 2", "()");
eval_assert("let mut a = 1; a = a + 2; a", "3");
eval_assert("1 + 2", "3");
eval_assert("let mut a = 1; a = 2", "()");
eval_assert("let mut a = 1; a = a + 2; a", "3");
}
#[test]
fn op_eval() {
eval_assert("- 13", "-13");
eval_assert("10 - 2", "8");
eval_assert("- 13", "-13");
eval_assert("10 - 2", "8");
}
#[test]
fn function_eval() {
eval_assert("fn oi(x) { x + 1 }; oi(4)", "5");
eval_assert("fn oi(x) { x + 1 }; oi(1+2)", "4");
eval_assert("fn oi(x) { x + 1 }; oi(4)", "5");
eval_assert("fn oi(x) { x + 1 }; oi(1+2)", "4");
}
#[test]
fn scopes() {
let scope_ok = r#"
let scope_ok = r#"
let a = 20
fn haha() {
let something = 38
@ -79,7 +78,7 @@ let b = Option::Some(10)
#[test]
fn basic_if_statement() {
let source = r#"
let source = r#"
let a = 10
let b = 10
if a == b then { 69 } else { 420 }
@ -89,7 +88,7 @@ fn basic_if_statement() {
#[test]
fn basic_patterns_1() {
let source =r#"
let source = r#"
let x = 10
let a = if x is 10 then { 255 } else { 256 }
let b = if 23 is 99 then { 255 } else { 256 }
@ -106,14 +105,16 @@ let d = if "xxx" is "yyy" then { 20 } else { 30 }
#[test_case("cyrus", "4")]
fn basic_patterns_2(input: &str, expected: &str) {
let mut source = format!(r#"let x = "{}""#, input);
source.push_str(r#"
source.push_str(
r#"
if x {
is "sanchez" then 1
is "mouri" then 2
is "hella" then 3
is _ then 4
}
"#);
"#,
);
eval_assert(&source, expected);
}
@ -121,31 +122,33 @@ if x {
#[test_case(r#"(99, "panda", false, -2.45)"#, r#""maybe""#)]
fn tuple_patterns(input: &str, expected: &str) {
let mut source = format!("let x = {}", input);
source.push_str(r#"
source.push_str(
r#"
if x {
is (45, "pablo", _, 28.4) then "no"
is (_, "panda", _, 2.2) then "yes"
is _ then "maybe"
}"#);
}"#,
);
eval_assert(&source, expected);
}
#[test]
fn if_is_patterns() {
let source = r#"
let source = r#"
type Option<T> = Some(T) | None
let q = "a string"
let x = Option::Some(9); if x is Option::Some(q) then { q } else { 0 }"#;
eval_assert(source, "9");
eval_assert(source, "9");
let source = r#"
let source = r#"
type Option<T> = Some(T) | None
let q = "a string"
let outer = 2
let x = Option::None; if x is Option::Some(q) then { q } else { -2 + outer }"#;
eval_assert(source, "0");
eval_assert(source, "0");
}
#[test]
@ -189,7 +192,7 @@ if a { is "foo" then "x", is _ then "y" }
#[test]
fn boolean_pattern() {
let source = r#"
let source = r#"
let a = true
if a {
is true then "x",
@ -201,7 +204,7 @@ if a {
#[test]
fn boolean_pattern_2() {
let source = r#"
let source = r#"
let a = false
if a { is true then "x", is false then "y" }
"#;
@ -210,7 +213,7 @@ if a { is true then "x", is false then "y" }
#[test]
fn ignore_pattern() {
let source = r#"
let source = r#"
type Option<T> = Some(T) | None
if Option::Some(10) {
is _ then "hella"
@ -221,7 +224,7 @@ if Option::Some(10) {
#[test]
fn tuple_pattern() {
let source = r#"
let source = r#"
if (1, 2) {
is (1, x) then x,
is _ then 99
@ -230,10 +233,9 @@ if (1, 2) {
eval_assert(source, "2");
}
#[test]
fn tuple_pattern_2() {
let source = r#"
let source = r#"
if (1, 2) {
is (10, x) then x,
is (y, x) then x + y
@ -244,7 +246,7 @@ if (1, 2) {
#[test]
fn tuple_pattern_3() {
let source = r#"
let source = r#"
if (1, 5) {
is (10, x) then x,
is (1, x) then x
@ -255,7 +257,7 @@ if (1, 5) {
#[test]
fn tuple_pattern_4() {
let source = r#"
let source = r#"
if (1, 5) {
is (10, x) then x,
is (1, x) then x,
@ -264,10 +266,9 @@ if (1, 5) {
eval_assert(source, "5");
}
#[test]
fn prim_obj_pattern() {
let source = r#"
fn prim_obj_pattern() {
let source = r#"
type Stuff = Mulch(Nat) | Jugs(Nat, String) | Mardok
let a = Stuff::Mulch(20)
let b = Stuff::Jugs(1, "haha")
@ -305,26 +306,26 @@ let y = \(m, n, o) { m + n + o }(1,2,3)
(x, y)
"#;
eval_assert(source, r"(10, 6)");
eval_assert(source, r"(10, 6)");
}
#[test]
fn basic_lambda_evaluation_2() {
let source = r#"
let source = r#"
fn milta() {
\(x) { x + 33 }
}
milta()(10)
"#;
eval_assert(source, "43");
}
eval_assert(source, "43");
}
#[test]
fn import_all() {
let source = r#"
let source = r#"
type Option<T> = Some(T) | None
import Option::*
let x = Some(9); if x is Some(q) then { q } else { 0 }"#;
eval_assert(source, "9");
eval_assert(source, "9");
}