use std::collections::HashMap; use std::rc::Rc; use std::fmt::Write; use itertools::Itertools; use parsing::{AST, Statement, Declaration, Expression, Variant, ExpressionType}; use ast_reducing::ReducedAST; use builtin::{BinOp, PrefixOp}; pub struct State<'a> { parent_frame: Option<&'a State<'a>>, values: HashMap, ValueEntry>, } impl<'a> State<'a> { fn insert(&mut self, name: Rc, value: ValueEntry) { self.values.insert(name, value); } fn lookup(&self, name: &Rc) -> Option<&ValueEntry> { match (self.values.get(name), self.parent_frame) { (None, None) => None, (None, Some(parent)) => parent.lookup(name), (Some(value), _) => Some(value), } } } #[derive(Debug)] enum ValueEntry { Binding { val: FullyEvaluatedExpr, }, Function { param_names: Vec>, body: Vec, } } type EvalResult = Result; #[derive(Debug, PartialEq, Clone)] enum FullyEvaluatedExpr { UnsignedInt(u64), SignedInt(i64), Float(f64), Str(String), Bool(bool), FuncLit(Rc), Custom { string_rep: Rc, }, Tuple(Vec), List(Vec) } impl FullyEvaluatedExpr { fn to_string(&self) -> String { use self::FullyEvaluatedExpr::*; match self { &UnsignedInt(ref n) => format!("{}", n), &SignedInt(ref n) => format!("{}", n), &Float(ref f) => format!("{}", f), &Str(ref s) => format!("\"{}\"", s), &Bool(ref b) => format!("{}", b), &Custom { ref string_rep } => format!("{}", string_rep), &Tuple(ref items) => { let mut buf = String::new(); write!(buf, "(").unwrap(); for term in items.iter().map(|e| Some(e)).intersperse(None) { match term { Some(e) => write!(buf, "{}", e.to_string()).unwrap(), None => write!(buf, ", ").unwrap(), }; } write!(buf, ")").unwrap(); buf }, &FuncLit(ref name) => format!("", name), &List(ref items) => { let mut buf = String::new(); write!(buf, "[").unwrap(); for term in items.iter().map(|e| Some(e)).intersperse(None) { match term { Some(e) => write!(buf, "{}", e.to_string()).unwrap(), None => write!(buf, ", ").unwrap() } } write!(buf, "]").unwrap(); buf } } } } impl<'a> State<'a> { pub fn new() -> State<'a> { State { parent_frame: None, values: HashMap::new() } } pub fn new_with_parent(parent: &'a State<'a>) -> State<'a> { State { parent_frame: Some(parent), values: HashMap::new() } } pub fn evaluate(&mut self, ast: AST) -> Vec> { let mut acc = vec![]; for statement in ast.0 { match self.eval_statement(statement) { Ok(output) => { if let Some(fully_evaluated) = output { acc.push(Ok(fully_evaluated.to_string())); } }, Err(error) => { acc.push(Err(format!("Eval error: {}", error))); return acc; }, } } acc } } impl<'a> State<'a> { fn eval_statement(&mut self, statement: Statement) -> EvalResult> { Ok(match statement { Statement::ExpressionStatement(expr) => Some(self.eval_expr(expr)?), Statement::Declaration(decl) => { self.eval_decl(decl)?; None } }) } fn eval_decl(&mut self, decl: Declaration) -> EvalResult<()> { use self::Declaration::*; use self::Variant::*; match decl { FuncDecl(signature, statements) => { let name = signature.name; let param_names: Vec> = signature.params.iter().map(|fp| fp.0.clone()).collect(); self.insert(name, ValueEntry::Function { body: statements.clone(), param_names }); }, TypeDecl(_name, body) => { for variant in body.0.iter() { match variant { &UnitStruct(ref name) => self.insert(name.clone(), ValueEntry::Binding { val: FullyEvaluatedExpr::Custom { string_rep: name.clone() } }), &TupleStruct(ref _name, ref _args) => unimplemented!(), &Record(ref _name, ref _fields) => unimplemented!(), }; } }, Binding { name, expr, ..} => { let val = self.eval_expr(expr)?; self.insert(name.clone(), ValueEntry::Binding { val }); }, _ => return Err(format!("Declaration evaluation not yet implemented")) } Ok(()) } fn eval_expr(&mut self, expr: Expression) -> EvalResult { use self::ExpressionType::*; use self::FullyEvaluatedExpr::*; let expr_type = expr.0; match expr_type { IntLiteral(n) => Ok(UnsignedInt(n)), FloatLiteral(f) => Ok(Float(f)), StringLiteral(s) => Ok(Str(s.to_string())), BoolLiteral(b) => Ok(Bool(b)), PrefixExp(op, expr) => self.eval_prefix_exp(op, expr), BinExp(op, lhs, rhs) => self.eval_binexp(op, lhs, rhs), Value(name) => self.eval_value(name), TupleLiteral(expressions) => { let mut evals = Vec::new(); for expr in expressions { match self.eval_expr(expr) { Ok(fully_evaluated) => evals.push(fully_evaluated), error => return error, } } Ok(Tuple(evals)) } Call { f, arguments } => { let mut evaled_arguments = Vec::new(); for arg in arguments.into_iter() { evaled_arguments.push(self.eval_expr(arg)?); } self.eval_application(*f, evaled_arguments) }, Index { box indexee, indexers } => { let evaled = self.eval_expr(indexee)?; match evaled { Tuple(mut exprs) => { let len = indexers.len(); if len == 1 { let idx = indexers.into_iter().nth(0).unwrap(); match self.eval_expr(idx)? { UnsignedInt(n) if (n as usize) < exprs.len() => Ok(exprs.drain(n as usize..).next().unwrap()), UnsignedInt(n) => Err(format!("Index {} out of range", n)), other => Err(format!("{:?} is not an unsigned integer", other)), } } else { Err(format!("Tuple index must be one integer")) } }, _ => Err(format!("Bad index expression")) } }, ListLiteral(items) => Ok(List(items.into_iter().map(|item| self.eval_expr(item)).collect::,_>>()?)), x => Err(format!("Unimplemented thing {:?}", x)), } } fn eval_application(&mut self, f: Expression, arguments: Vec) -> EvalResult { use self::ExpressionType::*; match f { Expression(Value(ref identifier), _) if self.is_builtin(identifier) => self.eval_builtin(identifier, arguments), Expression(Value(identifier), _) => { match self.lookup(&identifier) { Some(&ValueEntry::Function { ref body, ref param_names }) => { if arguments.len() != param_names.len() { return Err(format!("Wrong number of arguments for the function")); } let mut new_state = State::new_with_parent(self); let sub_ast = body.clone(); for (param, val) in param_names.iter().zip(arguments.into_iter()) { new_state.insert(param.clone(), ValueEntry::Binding { val }); } let mut ret: Option = None; for statement in sub_ast.into_iter() { ret = new_state.eval_statement(statement)?; } Ok(ret.unwrap_or(FullyEvaluatedExpr::Custom { string_rep: Rc::new("()".to_string()) })) }, _ => Err(format!("Function {} not found", identifier)), } }, x => Err(format!("Trying to apply {:?} which is not a function", x)), } } fn is_builtin(&self, name: &Rc) -> bool { match &name.as_ref()[..] { "print" | "println" => true, _ => false } } fn eval_builtin(&mut self, name: &Rc, args: Vec) -> EvalResult { use self::FullyEvaluatedExpr::*; match &name.as_ref()[..] { "print" => { for arg in args { print!("{}", arg.to_string()); } Ok(Tuple(vec![])) }, "println" => { for arg in args { println!("{}", arg.to_string()); } Ok(Tuple(vec![])) }, _ => unreachable!() } } fn eval_value(&mut self, name: Rc) -> EvalResult { use self::ValueEntry::*; match self.lookup(&name) { None => return Err(format!("Value {} not found", *name)), Some(lookup) => match lookup { &Binding { ref val } => Ok(val.clone()), &Function { .. } => Ok(FullyEvaluatedExpr::FuncLit(name.clone())) } } } fn eval_binexp(&mut self, op: BinOp, lhs: Box, rhs: Box) -> EvalResult { use self::FullyEvaluatedExpr::*; let evaled_lhs = self.eval_expr(*lhs)?; let evaled_rhs = self.eval_expr(*rhs)?; let sigil = op.sigil(); //let sigil: &str = op.sigil().as_ref().as_str(); Ok(match (sigil.as_str(), evaled_lhs, evaled_rhs) { ("+", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l + r), ("++", Str(s1), Str(s2)) => Str(format!("{}{}", s1, s2)), ("-", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l - r), ("*", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l * r), ("/", UnsignedInt(l), UnsignedInt(r)) => Float((l as f64)/ (r as f64)), ("//", UnsignedInt(l), UnsignedInt(r)) => if r == 0 { return Err(format!("Runtime error: divide by zero")); } else { UnsignedInt(l / r) }, ("%", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l % r), ("^", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l ^ r), ("&", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l & r), ("|", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l | r), _ => return Err(format!("Runtime error: not yet implemented")), }) } fn eval_prefix_exp(&mut self, op: PrefixOp, expr: Box) -> EvalResult { use self::FullyEvaluatedExpr::*; let evaled_expr = self.eval_expr(*expr)?; let sigil = op.sigil(); Ok(match (sigil.as_str(), evaled_expr) { ("!", Bool(true)) => Bool(false), ("!", Bool(false)) => Bool(true), ("-", UnsignedInt(n)) => SignedInt(-1*(n as i64)), ("-", SignedInt(n)) => SignedInt(-1*(n as i64)), ("+", SignedInt(n)) => SignedInt(n), ("+", UnsignedInt(n)) => UnsignedInt(n), _ => return Err(format!("Runtime error: not yet implemented")), }) } } /* BELOW HERE NEW STUFF */ impl<'a> State<'a> { pub fn evaluate_new(&mut self, ast: ReducedAST) -> Vec> { use ast_reducing::*; let mut acc = vec![]; for statement in ast.0 { match self.eval_statement_new(statement) { Ok(output) => { if let Some(fully_evaluated) = output { acc.push(Ok(fully_evaluated/*.to_string()*/)); } }, Err(error) => { acc.push(Err(format!("Eval error: {}", error))); return acc; }, } } acc } fn eval_statement_new(&mut self, stmt: ::ast_reducing::Stmt) -> Result, String> { Ok(Some(format!("stmt - {:?}", stmt))) } }