schala/schala-lang/src/eval.rs
2018-07-26 00:52:46 -07:00

411 lines
13 KiB
Rust

use std::collections::HashMap;
use std::rc::Rc;
use std::fmt::Write;
use itertools::Itertools;
use parsing::{AST, Statement, Declaration, Expression, Variant, ExpressionType};
use ast_reducing::{ReducedAST, Stmt, Expr, Lit, Func};
use builtin::{BinOp, PrefixOp};
pub struct State<'a> {
parent_frame: Option<&'a State<'a>>,
values: HashMap<Rc<String>, ValueEntry>,
}
impl<'a> State<'a> {
fn insert(&mut self, name: Rc<String>, value: ValueEntry) {
self.values.insert(name, value);
}
fn lookup(&self, name: &Rc<String>) -> Option<&ValueEntry> {
match (self.values.get(name), self.parent_frame) {
(None, None) => None,
(None, Some(parent)) => parent.lookup(name),
(Some(value), _) => Some(value),
}
}
}
#[derive(Debug)]
enum ValueEntry {
Binding {
val: FullyEvaluatedExpr,
},
Function {
param_names: Vec<Rc<String>>,
body: Vec<Statement>,
}
}
type EvalResult<T> = Result<T, String>;
#[derive(Debug, PartialEq, Clone)]
enum FullyEvaluatedExpr {
UnsignedInt(u64),
SignedInt(i64),
Float(f64),
Str(String),
Bool(bool),
FuncLit(Rc<String>),
Custom {
string_rep: Rc<String>,
},
Tuple(Vec<FullyEvaluatedExpr>),
List(Vec<FullyEvaluatedExpr>)
}
impl FullyEvaluatedExpr {
fn to_string(&self) -> String {
use self::FullyEvaluatedExpr::*;
match self {
&UnsignedInt(ref n) => format!("{}", n),
&SignedInt(ref n) => format!("{}", n),
&Float(ref f) => format!("{}", f),
&Str(ref s) => format!("\"{}\"", s),
&Bool(ref b) => format!("{}", b),
&Custom { ref string_rep } => format!("{}", string_rep),
&Tuple(ref items) => {
let mut buf = String::new();
write!(buf, "(").unwrap();
for term in items.iter().map(|e| Some(e)).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e.to_string()).unwrap(),
None => write!(buf, ", ").unwrap(),
};
}
write!(buf, ")").unwrap();
buf
},
&FuncLit(ref name) => format!("<function {}>", name),
&List(ref items) => {
let mut buf = String::new();
write!(buf, "[").unwrap();
for term in items.iter().map(|e| Some(e)).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e.to_string()).unwrap(),
None => write!(buf, ", ").unwrap()
}
}
write!(buf, "]").unwrap();
buf
}
}
}
}
impl<'a> State<'a> {
pub fn new() -> State<'a> {
State { parent_frame: None, values: HashMap::new() }
}
pub fn new_with_parent(parent: &'a State<'a>) -> State<'a> {
State { parent_frame: Some(parent), values: HashMap::new() }
}
pub fn evaluate(&mut self, ast: AST) -> Vec<Result<String, String>> {
let mut acc = vec![];
for statement in ast.0 {
match self.eval_statement(statement) {
Ok(output) => {
if let Some(fully_evaluated) = output {
acc.push(Ok(fully_evaluated.to_string()));
}
},
Err(error) => {
acc.push(Err(format!("Eval error: {}", error)));
return acc;
},
}
}
acc
}
}
impl<'a> State<'a> {
fn eval_statement(&mut self, statement: Statement) -> EvalResult<Option<FullyEvaluatedExpr>> {
Ok(match statement {
Statement::ExpressionStatement(expr) => Some(self.eval_expr(expr)?),
Statement::Declaration(decl) => { self.eval_decl(decl)?; None }
})
}
fn eval_decl(&mut self, decl: Declaration) -> EvalResult<()> {
use self::Declaration::*;
use self::Variant::*;
match decl {
FuncDecl(signature, statements) => {
let name = signature.name;
let param_names: Vec<Rc<String>> = signature.params.iter().map(|fp| fp.0.clone()).collect();
self.insert(name, ValueEntry::Function { body: statements.clone(), param_names });
},
TypeDecl(_name, body) => {
for variant in body.0.iter() {
match variant {
&UnitStruct(ref name) => self.insert(name.clone(),
ValueEntry::Binding { val: FullyEvaluatedExpr::Custom { string_rep: name.clone() } }),
&TupleStruct(ref _name, ref _args) => unimplemented!(),
&Record(ref _name, ref _fields) => unimplemented!(),
};
}
},
Binding { name, expr, ..} => {
let val = self.eval_expr(expr)?;
self.insert(name.clone(), ValueEntry::Binding { val });
},
_ => return Err(format!("Declaration evaluation not yet implemented"))
}
Ok(())
}
fn eval_expr(&mut self, expr: Expression) -> EvalResult<FullyEvaluatedExpr> {
use self::ExpressionType::*;
use self::FullyEvaluatedExpr::*;
let expr_type = expr.0;
match expr_type {
IntLiteral(n) => Ok(UnsignedInt(n)),
FloatLiteral(f) => Ok(Float(f)),
StringLiteral(s) => Ok(Str(s.to_string())),
BoolLiteral(b) => Ok(Bool(b)),
PrefixExp(op, expr) => self.eval_prefix_exp(op, expr),
BinExp(op, lhs, rhs) => self.eval_binexp(op, lhs, rhs),
Value(name) => self.eval_value(name),
TupleLiteral(expressions) => {
let mut evals = Vec::new();
for expr in expressions {
match self.eval_expr(expr) {
Ok(fully_evaluated) => evals.push(fully_evaluated),
error => return error,
}
}
Ok(Tuple(evals))
}
Call { f, arguments } => {
let mut evaled_arguments = Vec::new();
for arg in arguments.into_iter() {
evaled_arguments.push(self.eval_expr(arg)?);
}
self.eval_application(*f, evaled_arguments)
},
Index { box indexee, indexers } => {
let evaled = self.eval_expr(indexee)?;
match evaled {
Tuple(mut exprs) => {
let len = indexers.len();
if len == 1 {
let idx = indexers.into_iter().nth(0).unwrap();
match self.eval_expr(idx)? {
UnsignedInt(n) if (n as usize) < exprs.len() => Ok(exprs.drain(n as usize..).next().unwrap()),
UnsignedInt(n) => Err(format!("Index {} out of range", n)),
other => Err(format!("{:?} is not an unsigned integer", other)),
}
} else {
Err(format!("Tuple index must be one integer"))
}
},
_ => Err(format!("Bad index expression"))
}
},
ListLiteral(items) => Ok(List(items.into_iter().map(|item| self.eval_expr(item)).collect::<Result<Vec<_>,_>>()?)),
x => Err(format!("Unimplemented thing {:?}", x)),
}
}
fn eval_application(&mut self, f: Expression, arguments: Vec<FullyEvaluatedExpr>) -> EvalResult<FullyEvaluatedExpr> {
use self::ExpressionType::*;
match f {
Expression(Value(ref identifier), _) if self.is_builtin(identifier) => self.eval_builtin(identifier, arguments),
Expression(Value(identifier), _) => {
match self.lookup(&identifier) {
Some(&ValueEntry::Function { ref body, ref param_names }) => {
if arguments.len() != param_names.len() {
return Err(format!("Wrong number of arguments for the function"));
}
let mut new_state = State::new_with_parent(self);
let sub_ast = body.clone();
for (param, val) in param_names.iter().zip(arguments.into_iter()) {
new_state.insert(param.clone(), ValueEntry::Binding { val });
}
let mut ret: Option<FullyEvaluatedExpr> = None;
for statement in sub_ast.into_iter() {
ret = new_state.eval_statement(statement)?;
}
Ok(ret.unwrap_or(FullyEvaluatedExpr::Custom { string_rep: Rc::new("()".to_string()) }))
},
_ => Err(format!("Function {} not found", identifier)),
}
},
x => Err(format!("Trying to apply {:?} which is not a function", x)),
}
}
fn is_builtin(&self, name: &Rc<String>) -> bool {
match &name.as_ref()[..] {
"print" | "println" => true,
_ => false
}
}
fn eval_builtin(&mut self, name: &Rc<String>, args: Vec<FullyEvaluatedExpr>) -> EvalResult<FullyEvaluatedExpr> {
use self::FullyEvaluatedExpr::*;
match &name.as_ref()[..] {
"print" => {
for arg in args {
print!("{}", arg.to_string());
}
Ok(Tuple(vec![]))
},
"println" => {
for arg in args {
println!("{}", arg.to_string());
}
Ok(Tuple(vec![]))
},
_ => unreachable!()
}
}
fn eval_value(&mut self, name: Rc<String>) -> EvalResult<FullyEvaluatedExpr> {
use self::ValueEntry::*;
match self.lookup(&name) {
None => return Err(format!("Value {} not found", *name)),
Some(lookup) => match lookup {
&Binding { ref val } => Ok(val.clone()),
&Function { .. } => Ok(FullyEvaluatedExpr::FuncLit(name.clone()))
}
}
}
fn eval_binexp(&mut self, op: BinOp, lhs: Box<Expression>, rhs: Box<Expression>) -> EvalResult<FullyEvaluatedExpr> {
use self::FullyEvaluatedExpr::*;
let evaled_lhs = self.eval_expr(*lhs)?;
let evaled_rhs = self.eval_expr(*rhs)?;
let sigil = op.sigil();
//let sigil: &str = op.sigil().as_ref().as_str();
Ok(match (sigil.as_str(), evaled_lhs, evaled_rhs) {
("+", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l + r),
("++", Str(s1), Str(s2)) => Str(format!("{}{}", s1, s2)),
("-", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l - r),
("*", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l * r),
("/", UnsignedInt(l), UnsignedInt(r)) => Float((l as f64)/ (r as f64)),
("//", UnsignedInt(l), UnsignedInt(r)) => if r == 0 {
return Err(format!("Runtime error: divide by zero"));
} else {
UnsignedInt(l / r)
},
("%", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l % r),
("^", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l ^ r),
("&", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l & r),
("|", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l | r),
_ => return Err(format!("Runtime error: not yet implemented")),
})
}
fn eval_prefix_exp(&mut self, op: PrefixOp, expr: Box<Expression>) -> EvalResult<FullyEvaluatedExpr> {
use self::FullyEvaluatedExpr::*;
let evaled_expr = self.eval_expr(*expr)?;
let sigil = op.sigil();
Ok(match (sigil.as_str(), evaled_expr) {
("!", Bool(true)) => Bool(false),
("!", Bool(false)) => Bool(true),
("-", UnsignedInt(n)) => SignedInt(-1*(n as i64)),
("-", SignedInt(n)) => SignedInt(-1*(n as i64)),
("+", SignedInt(n)) => SignedInt(n),
("+", UnsignedInt(n)) => UnsignedInt(n),
_ => return Err(format!("Runtime error: not yet implemented")),
})
}
}
/* BELOW HERE NEW STUFF */
impl Expr {
fn to_repl(&self) -> String {
use self::Lit::*;
match self {
Expr::Lit(ref l) => match l {
Nat(n) => format!("{}", n),
Int(i) => format!("{}", i),
Float(f) => format!("{}", f),
Bool(b) => format!("{}", b),
StringLit(s) => format!("{}", s),
},
_ => format!("{:?}", self),
}
}
}
impl<'a> State<'a> {
pub fn evaluate_new(&mut self, ast: ReducedAST, repl: bool) -> Vec<Result<String, String>> {
use ast_reducing::*;
let mut acc = vec![];
for statement in ast.0 {
match self.statement(statement) {
Ok(Some(ref output)) if repl => acc.push(Ok(output.to_repl())),
Ok(_) => (),
Err(error) => {
acc.push(Err(format!("Eval error: {}", error)));
return acc;
},
}
}
acc
}
fn statement(&mut self, stmt: Stmt) -> Result<Option<Expr>, String> {
match stmt {
Stmt::Binding { .. } => {
//TODO mutate some state here
Ok(None)
},
Stmt::Expr(expr) => Ok(Some(self.expression(expr)?)),
}
}
fn expression(&mut self, expr: Expr) -> Result<Expr, String> {
use self::Expr::*;
match expr {
literal @ Lit(_) => Ok(literal),
Call { f, args } => self.apply_function(f, args),
_ => Err(format!("NOT IMPLEMENTED YET"))
}
}
fn apply_function(&mut self, f: Func, args: Vec<Expr>) -> Result<Expr, String> {
match f {
Func::BuiltIn(sigil) => self.apply_builtin(sigil, args),
Func::UserDefined { params, body } => {
Err(format!("Function application not done yet"))
}
}
}
fn apply_builtin(&mut self, name: Rc<String>, args: Vec<Expr>) -> Result<Expr, String> {
use self::Expr::*;
use self::Lit::*;
let evaled_args: Result<Vec<Expr>, String> = args.into_iter().map(|arg| self.expression(arg)).collect();
let evaled_args = evaled_args?;
Ok(match (name.as_str(), evaled_args.as_slice()) {
("+", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l + r)),
/*
("++", Str(s1), Str(s2)) => Str(format!("{}{}", s1, s2)),
("-", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l - r),
("*", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l * r),
("/", UnsignedInt(l), UnsignedInt(r)) => Float((l as f64)/ (r as f64)),
("//", UnsignedInt(l), UnsignedInt(r)) => if r == 0 {
return Err(format!("Runtime error: divide by zero"));
} else {
UnsignedInt(l / r)
},
("%", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l % r),
("^", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l ^ r),
("&", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l & r),
("|", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l | r),
*/
_ => return Err(format!("Runtime error: not yet implemented")),
})
}
}