489 lines
13 KiB
Rust
489 lines
13 KiB
Rust
use std::cell::RefCell;
|
|
use std::rc::Rc;
|
|
use std::collections::HashMap;
|
|
use std::fmt;
|
|
use std::fmt::Write;
|
|
/*
|
|
use std::collections::hash_set::Union;
|
|
use std::iter::Iterator;
|
|
use itertools::Itertools;
|
|
*/
|
|
|
|
use parsing;
|
|
use util::StateStack;
|
|
use symbol_table::{SymbolSpec, Symbol, SymbolTable};
|
|
|
|
pub type TypeName = Rc<String>;
|
|
type TypeResult<T> = Result<T, String>;
|
|
|
|
#[derive(Debug, PartialEq, Clone)]
|
|
enum Type {
|
|
Const(TConst),
|
|
Var(TypeName),
|
|
Func(Vec<Type>),
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Clone)]
|
|
enum TConst {
|
|
Unit,
|
|
Nat,
|
|
StringT,
|
|
Custom(String)
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Clone)]
|
|
struct Scheme {
|
|
names: Vec<TypeName>,
|
|
ty: Type,
|
|
}
|
|
|
|
impl fmt::Display for Scheme {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "∀{:?} . {:?}", self.names, self.ty)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Clone)]
|
|
struct Substitution(HashMap<TypeName, Type>);
|
|
impl Substitution {
|
|
fn empty() -> Substitution {
|
|
Substitution(HashMap::new())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Clone)]
|
|
struct TypeEnv(HashMap<TypeName, Scheme>);
|
|
|
|
impl TypeEnv {
|
|
fn default() -> TypeEnv {
|
|
TypeEnv(HashMap::new())
|
|
}
|
|
|
|
fn populate_from_symbols(&mut self, symbol_table: &SymbolTable) {
|
|
for (name, symbol) in symbol_table.values.iter() {
|
|
if let SymbolSpec::Func(ref type_names) = symbol.spec {
|
|
let mut ch: char = 'a';
|
|
let mut names = vec![];
|
|
for _ in type_names.iter() {
|
|
names.push(Rc::new(format!("{}", ch)));
|
|
ch = ((ch as u8) + 1) as char;
|
|
}
|
|
|
|
let sigma = Scheme {
|
|
names: names.clone(),
|
|
ty: Type::Func(names.into_iter().map(|n| Type::Var(n)).collect())
|
|
};
|
|
self.0.insert(name.clone(), sigma);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct TypeContext<'a> {
|
|
values: StateStack<'a, TypeName, Type>,
|
|
symbol_table_handle: Rc<RefCell<SymbolTable>>,
|
|
global_env: TypeEnv
|
|
}
|
|
|
|
impl<'a> TypeContext<'a> {
|
|
pub fn new(symbol_table_handle: Rc<RefCell<SymbolTable>>) -> TypeContext<'static> {
|
|
TypeContext { values: StateStack::new(None), global_env: TypeEnv::default(), symbol_table_handle }
|
|
}
|
|
|
|
pub fn debug_types(&self) -> String {
|
|
let mut output = format!("Type environment\n");
|
|
for (name, scheme) in &self.global_env.0 {
|
|
write!(output, "{} -> {}\n", name, scheme).unwrap();
|
|
}
|
|
output
|
|
}
|
|
|
|
pub fn type_check_ast(&mut self, input: &parsing::AST) -> Result<String, String> {
|
|
let ref symbol_table = self.symbol_table_handle.borrow();
|
|
self.global_env.populate_from_symbols(symbol_table);
|
|
let output = self.global_env.infer_block(&input.0)?;
|
|
Ok(format!("{:?}", output))
|
|
}
|
|
}
|
|
|
|
impl TypeEnv {
|
|
fn instantiate(&mut self, sigma: Scheme) -> Type {
|
|
match sigma {
|
|
Scheme { ty, .. } => ty,
|
|
}
|
|
}
|
|
fn generate(&mut self, ty: Type) -> Scheme {
|
|
Scheme {
|
|
names: vec![], //TODO incomplete
|
|
ty
|
|
}
|
|
}
|
|
fn infer_block(&mut self, block: &Vec<parsing::Statement>) -> TypeResult<Type> {
|
|
let mut output = Type::Const(TConst::Unit);
|
|
for statement in block {
|
|
output = self.infer_statement(statement)?;
|
|
}
|
|
Ok(output)
|
|
}
|
|
fn infer_statement(&mut self, statement: &parsing::Statement) -> TypeResult<Type> {
|
|
match statement {
|
|
parsing::Statement::ExpressionStatement(expr) => self.infer_expr(expr),
|
|
parsing::Statement::Declaration(decl) => self.infer_decl(decl)
|
|
}
|
|
}
|
|
fn infer_decl(&mut self, decl: &parsing::Declaration) -> TypeResult<Type> {
|
|
use parsing::Declaration::*;
|
|
match decl {
|
|
Binding { name, expr, .. } => {
|
|
let ty = self.infer_expr(expr)?;
|
|
let sigma = self.generate(ty);
|
|
self.0.insert(name.clone(), sigma);
|
|
},
|
|
_ => (),
|
|
}
|
|
Ok(Type::Const(TConst::Unit))
|
|
}
|
|
fn infer_expr(&mut self, expr: &parsing::Expression) -> TypeResult<Type> {
|
|
match expr {
|
|
parsing::Expression(expr, Some(anno)) => {
|
|
self.infer_exprtype(expr)
|
|
},
|
|
parsing::Expression(expr, None) => {
|
|
self.infer_exprtype(expr)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn infer_exprtype(&mut self, expr: &parsing::ExpressionType) -> TypeResult<Type> {
|
|
use self::TConst::*;
|
|
use parsing::ExpressionType::*;
|
|
Ok(match expr {
|
|
NatLiteral(_) => Type::Const(Nat),
|
|
StringLiteral(_) => Type::Const(StringT),
|
|
BinExp(op, lhs, rhs) => {
|
|
|
|
return Err(format!("NOTDONE"))
|
|
},
|
|
Call { f, arguments } => {
|
|
|
|
return Err(format!("NOTDONE"))
|
|
},
|
|
Value(name) => {
|
|
let s = match self.0.get(name) {
|
|
Some(sigma) => sigma.clone(),
|
|
None => return Err(format!("Unknown variable: {}", name))
|
|
};
|
|
self.instantiate(s)
|
|
},
|
|
_ => Type::Const(Unit)
|
|
})
|
|
}
|
|
}
|
|
|
|
|
|
/* GIANT TODO - use the rust im crate, unless I make this code way less haskell-ish after it's done
|
|
*/
|
|
|
|
/*
|
|
|
|
|
|
pub type TypeResult<T> = Result<T, String>;
|
|
*/
|
|
|
|
/* TODO this should just check the name against a map, and that map should be pre-populated with
|
|
* types */
|
|
/*
|
|
impl parsing::TypeName {
|
|
fn to_type(&self) -> TypeResult<Type> {
|
|
use self::parsing::TypeSingletonName;
|
|
use self::parsing::TypeName::*;
|
|
use self::Type::*; use self::TConstOld::*;
|
|
Ok(match self {
|
|
Tuple(_) => return Err(format!("Tuples not yet implemented")),
|
|
Singleton(name) => match name {
|
|
TypeSingletonName { name, .. } => match &name[..] {
|
|
/*
|
|
"Nat" => Const(Nat),
|
|
"Int" => Const(Int),
|
|
"Float" => Const(Float),
|
|
"Bool" => Const(Bool),
|
|
"String" => Const(StringT),
|
|
*/
|
|
n => Const(Custom(n.to_string()))
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
impl TypeContext {
|
|
pub fn type_check_ast(&mut self, ast: &parsing::AST) -> TypeResult<String> {
|
|
let ref block = ast.0;
|
|
let mut infer = Infer::default();
|
|
let env = TypeEnvironment::default();
|
|
let output = infer.infer_block(block, &env);
|
|
match output {
|
|
Ok(s) => Ok(format!("{:?}", s)),
|
|
Err(s) => Err(format!("Error: {:?}", s))
|
|
}
|
|
}
|
|
}
|
|
|
|
// this is the equivalent of the Haskell Infer monad
|
|
#[derive(Debug, Default)]
|
|
struct Infer {
|
|
_idents: u32,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum InferError {
|
|
CannotUnify(MonoType, MonoType),
|
|
OccursCheckFailed(Rc<String>, MonoType),
|
|
UnknownIdentifier(Rc<String>),
|
|
Custom(String),
|
|
}
|
|
|
|
type InferResult<T> = Result<T, InferError>;
|
|
|
|
|
|
impl Infer {
|
|
fn fresh(&mut self) -> MonoType {
|
|
let i = self._idents;
|
|
self._idents += 1;
|
|
let name = Rc::new(format!("{}", ('a' as u8 + 1) as char));
|
|
MonoType::Var(name)
|
|
}
|
|
|
|
fn unify(&mut self, a: MonoType, b: MonoType) -> InferResult<Substitution> {
|
|
use self::InferError::*; use self::MonoType::*;
|
|
Ok(match (a, b) {
|
|
(Const(ref a), Const(ref b)) if a == b => Substitution::new(),
|
|
(Var(ref name), ref var) => Substitution::bind_variable(name, var),
|
|
(ref var, Var(ref name)) => Substitution::bind_variable(name, var),
|
|
(Function(box a1, box b1), Function(box a2, box b2)) => {
|
|
let s1 = self.unify(a1, a2)?;
|
|
let s2 = self.unify(b1.apply_substitution(&s1), b2.apply_substitution(&s1))?;
|
|
s1.merge(s2)
|
|
},
|
|
(a, b) => return Err(CannotUnify(a, b))
|
|
})
|
|
}
|
|
|
|
fn infer_block(&mut self, block: &Vec<parsing::Statement>, env: &TypeEnvironment) -> InferResult<MonoType> {
|
|
use self::parsing::Statement;
|
|
let mut ret = MonoType::Const(TypeConst::Unit);
|
|
for statement in block.iter() {
|
|
ret = match statement {
|
|
Statement::ExpressionStatement(expr) => {
|
|
let (sub, ty) = self.infer_expr(expr, env)?;
|
|
//TODO handle substitution monadically
|
|
|
|
ty
|
|
}
|
|
Statement::Declaration(decl) => MonoType::Const(TypeConst::Unit),
|
|
}
|
|
}
|
|
Ok(ret)
|
|
}
|
|
|
|
fn infer_expr(&mut self, expr: &parsing::Expression, env: &TypeEnvironment) -> InferResult<(Substitution, MonoType)> {
|
|
use self::parsing::Expression;
|
|
match expr {
|
|
Expression(e, Some(anno)) => self.infer_annotated_expr(e, anno, env),
|
|
/*
|
|
let anno_ty = anno.to_type()?;
|
|
let ty = self.infer_exprtype(&e)?;
|
|
self.unify(ty, anno_ty)
|
|
},
|
|
*/
|
|
Expression(e, None) => self.infer_exprtype(e, env)
|
|
}
|
|
}
|
|
|
|
fn infer_annotated_expr(&mut self, expr: &parsing::ExpressionType, anno: &parsing::TypeName, env: &TypeEnvironment) -> InferResult<(Substitution, MonoType)> {
|
|
Err(InferError::Custom(format!("exprtype not done: {:?}", expr)))
|
|
}
|
|
fn infer_exprtype(&mut self, expr: &parsing::ExpressionType, env: &TypeEnvironment) -> InferResult<(Substitution, MonoType)> {
|
|
use self::parsing::ExpressionType::*;
|
|
use self::TypeConst::*;
|
|
Ok(match expr {
|
|
NatLiteral(_) => (Substitution::new(), MonoType::Const(Nat)),
|
|
FloatLiteral(_) => (Substitution::new(), MonoType::Const(Float)),
|
|
StringLiteral(_) => (Substitution::new(), MonoType::Const(StringT)),
|
|
BoolLiteral(_) => (Substitution::new(), MonoType::Const(Bool)),
|
|
Value(name) => match env.lookup(name) {
|
|
Some(sigma) => {
|
|
let tau = self.instantiate(&sigma);
|
|
(Substitution::new(), tau)
|
|
},
|
|
None => return Err(InferError::UnknownIdentifier(name.clone())),
|
|
},
|
|
e => return Err(InferError::Custom(format!("Type inference for {:?} not done", e)))
|
|
})
|
|
}
|
|
fn instantiate(&mut self, sigma: &PolyType) -> MonoType {
|
|
let ref ty: MonoType = sigma.1;
|
|
let mut subst = Substitution::new();
|
|
|
|
for name in sigma.0.iter() {
|
|
let fresh_mvar = self.fresh();
|
|
let new = Substitution::bind_variable(name, &fresh_mvar);
|
|
subst = subst.merge(new);
|
|
}
|
|
ty.apply_substitution(&subst)
|
|
}
|
|
}
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* OLD STUFF DOWN HERE */
|
|
|
|
|
|
|
|
/*
|
|
impl TypeContext {
|
|
fn infer_block(&mut self, statements: &Vec<parsing::Statement>) -> TypeResult<Type> {
|
|
let mut ret_type = Type::Const(TConst::Unit);
|
|
for statement in statements {
|
|
ret_type = self.infer_statement(statement)?;
|
|
}
|
|
Ok(ret_type)
|
|
}
|
|
|
|
fn infer_statement(&mut self, statement: &parsing::Statement) -> TypeResult<Type> {
|
|
use self::parsing::Statement::*;
|
|
match statement {
|
|
ExpressionStatement(expr) => self.infer(expr),
|
|
Declaration(decl) => self.add_declaration(decl),
|
|
}
|
|
}
|
|
fn add_declaration(&mut self, decl: &parsing::Declaration) -> TypeResult<Type> {
|
|
use self::parsing::Declaration::*;
|
|
use self::Type::*;
|
|
match decl {
|
|
Binding { name, expr, .. } => {
|
|
let ty = self.infer(expr)?;
|
|
self.bindings.insert(name.clone(), ty);
|
|
},
|
|
_ => return Err(format!("other formats not done"))
|
|
}
|
|
Ok(Void)
|
|
}
|
|
fn infer(&mut self, expr: &parsing::Expression) -> TypeResult<Type> {
|
|
use self::parsing::Expression;
|
|
match expr {
|
|
Expression(e, Some(anno)) => {
|
|
let anno_ty = anno.to_type()?;
|
|
let ty = self.infer_exprtype(&e)?;
|
|
self.unify(ty, anno_ty)
|
|
},
|
|
Expression(e, None) => self.infer_exprtype(e)
|
|
}
|
|
}
|
|
fn infer_exprtype(&mut self, expr: &parsing::ExpressionType) -> TypeResult<Type> {
|
|
use self::parsing::ExpressionType::*;
|
|
use self::Type::*; use self::TConst::*;
|
|
match expr {
|
|
NatLiteral(_) => Ok(Const(Nat)),
|
|
FloatLiteral(_) => Ok(Const(Float)),
|
|
StringLiteral(_) => Ok(Const(StringT)),
|
|
BoolLiteral(_) => Ok(Const(Bool)),
|
|
BinExp(op, lhs, rhs) => { /* remember there are both the haskell convention talk and the write you a haskell ways to do this! */
|
|
match op.get_type()? {
|
|
Func(box t1, box Func(box t2, box t3)) => {
|
|
let lhs_ty = self.infer(lhs)?;
|
|
let rhs_ty = self.infer(rhs)?;
|
|
self.unify(t1, lhs_ty)?;
|
|
self.unify(t2, rhs_ty)?;
|
|
Ok(t3)
|
|
},
|
|
other => Err(format!("{:?} is not a binary function type", other))
|
|
}
|
|
},
|
|
PrefixExp(op, expr) => match op.get_type()? {
|
|
Func(box t1, box t2) => {
|
|
let expr_ty = self.infer(expr)?;
|
|
self.unify(t1, expr_ty)?;
|
|
Ok(t2)
|
|
},
|
|
other => Err(format!("{:?} is not a prefix op function type", other))
|
|
},
|
|
Value(name) => {
|
|
match self.bindings.get(name) {
|
|
Some(ty) => Ok(ty.clone()),
|
|
None => Err(format!("No binding found for variable: {}", name)),
|
|
}
|
|
},
|
|
Call { f, arguments } => {
|
|
let mut tf = self.infer(f)?;
|
|
for arg in arguments.iter() {
|
|
match tf {
|
|
Func(box t, box rest) => {
|
|
let t_arg = self.infer(arg)?;
|
|
self.unify(t, t_arg)?;
|
|
tf = rest;
|
|
},
|
|
other => return Err(format!("Function call failed to unify; last type: {:?}", other)),
|
|
}
|
|
}
|
|
Ok(tf)
|
|
},
|
|
TupleLiteral(expressions) => {
|
|
let mut types = vec![];
|
|
for expr in expressions {
|
|
types.push(self.infer(expr)?);
|
|
}
|
|
Ok(Sum(types))
|
|
},
|
|
_ => Err(format!("Type not yet implemented"))
|
|
}
|
|
}
|
|
fn unify(&mut self, t1: Type, t2: Type) -> TypeResult<Type> {
|
|
use self::Type::*;// use self::TConst::*;
|
|
match (t1, t2) {
|
|
(Const(ref a), Const(ref b)) if a == b => Ok(Const(a.clone())),
|
|
(a, b) => Err(format!("Types {:?} and {:?} don't unify", a, b))
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{Type, TConst, TypeContext};
|
|
use super::Type::*;
|
|
use super::TConst::*;
|
|
|
|
macro_rules! type_test {
|
|
($input:expr, $correct:expr) => {
|
|
{
|
|
let mut tc = TypeContext::new();
|
|
let ast = ::parsing::parse(::tokenizing::tokenize($input)).0.unwrap() ;
|
|
//tc.add_symbols(&ast);
|
|
assert_eq!($correct, tc.infer_block(&ast.0).unwrap())
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn basic_inference() {
|
|
type_test!("30", Const(Nat));
|
|
//type_test!("fn x(a: Int): Bool {}; x(1)", TConst(Boolean));
|
|
}
|
|
}
|