schala/schala-lang/src/parsing.rs
greg 6b90e19eb1 Simplify expect! macro
Ends up printing a debug print, but whatever, will fix later
2018-07-26 00:52:46 -07:00

1359 lines
45 KiB
Rust

use std::rc::Rc;
use std::iter::Peekable;
use std::vec::IntoIter;
use tokenizing::*;
use tokenizing::Kw::*;
use tokenizing::TokenType::*;
use builtin::{BinOp, PrefixOp};
/* Schala EBNF Grammar */
/* Terminal productions are in 'single quotes' or UPPERCASE if they are a class
* or not representable in ASCII
program := (statement delimiter)* EOF
delimiter := NEWLINE | ';'
statement := expression | declaration
declaration := type_declaration | func_declaration | binding_declaration | impl_declaration
type_declaration := 'type' type_declaration_body
type_declaration_body := 'alias' type_alias | type_singleton_name '=' type_body
type_alias := IDENTIFIER '=' type_name
type_body := variant_specifier ('|' variant_specifier)*
variant_specifier := IDENTIFIER | IDENTIFIER '{' typed_identifier_list '}' | IDENTIFIER '(' type_name* ')'
typed_identifier_list := typed_identifier*
typed_identifier := IDENTIFIER type_anno
func_declaration := func_signature func_body
func_body := ε | '{' (statement delimiter)* '}'
func_signature := 'fn' IDENTIFIER formal_param_list func_body
formal_param_list := '(' (formal_param ',')* ')'
formal_param := IDENTIFIER type_anno+
binding_declaration: 'var' IDENTIFIER '=' expression
| 'const' IDENTIFIER '=' expression
interface_declaration := 'interface' interface_name signature_block
impl_declaration := 'impl' IDENTIFIER decl_block | 'impl' interface_name 'for' IDENTIFIER decl_block
decl_block := '{' (func_declaration)* '}'
signature_block := '{' (func_signature)* '}'
interface_name := IDENTIFIER
type_anno := (':' type_name)+
type_name := type_singleton_name | '(' type_names ')'
type_names := ε | type_name (, type_name)*
type_singleton_name = IDENTIFIER (type_params)*
type_params := '<' type_name (, type_name)* '>'
expression := precedence_expr type_anno+
precedence_expr := prefix_expr
prefix_expr := prefix_op call_expr
prefix_op := '+' | '-' | '!' | '~'
call_expr := index_expr ( '(' expr_list ')' )*
index_expr := primary ( '[' (expression (',' (expression)* | ε) ']' )*
primary := literal | paren_expr | if_expr | match_expr | for_expr | while_expr | identifier_expr | curly_brace_expr | list_expr
curly_brace_expr := lambda_expr | anonymous_struct //TODO
list_expr := '[' (expression, ',')* ']'
lambda_expr := '{' '|' (formal_param ',')* '|' (type_anno)* (statement delimiter)* '}'
paren_expr := LParen paren_inner RParen
paren_inner := (expression ',')*
identifier_expr := named_struct | IDENTIFIER
literal := 'true' | 'false' | number_literal | STR_LITERAL
named_struct := IDENTIFIER record_block
record_block := '{' (record_entry, ',')* | '}' //TODO support anonymus structs, update syntax
record_entry := IDENTIFIER ':' expression
anonymous_struct := TODO
if_expr := 'if' expression block else_clause
else_clause := ε | 'else' block
match_expr := 'match' expression match_body
match_body := '{' (match_arm)* '}'
match_arm := pattern '=>' expression
pattern := identifier //TODO NOT DONE
block := '{' (statement delimiter)* '}'
expr_list := expression (',' expression)* | ε
while_expr := 'while' while_cond '{' (statement delimiter)* '}'
while_cond := ε | expression | expression 'is' pattern //TODO maybe is-expresions should be primary
//TODO this implies there must be at least one enumerator, which the parser doesn't support right
//this second, and maybe should fail later anyway
for_expr := 'for' (enumerator | '{' enumerators '}') for_expr_body
for_expr_body := 'return' expression | '{' (statement delimiter)* '}
enumerators := enumerator (',' enumerators)*
enumerator := identifier '<-' expression | identifier '=' expression //TODO add guards, etc.
// a float_literal can still be assigned to an int in type-checking
number_literal := int_literal | float_literal
int_literal = ('0x' | '0b') digits
float_literal := digits ('.' digits)
digits := (DIGIT_GROUP underscore)+
*/
type TokenIter = Peekable<IntoIter<Token>>;
#[derive(Debug, PartialEq)]
pub struct ParseError {
pub msg: String,
}
impl ParseError {
fn new<T>(msg: &str) -> ParseResult<T> {
Err(ParseError { msg: msg.to_string() })
}
}
pub type ParseResult<T> = Result<T, ParseError>;
#[derive(Debug)]
pub struct ParseRecord {
production_name: String,
next_token: String,
level: u32,
}
struct Parser {
tokens: TokenIter,
parse_record: Vec<ParseRecord>,
parse_level: u32,
restrictions: ParserRestrictions,
}
struct ParserRestrictions {
no_struct_literal: bool
}
impl Parser {
fn new(input: Vec<Token>) -> Parser {
Parser {
tokens: input.into_iter().peekable(),
parse_record: vec![],
parse_level: 0,
restrictions: ParserRestrictions { no_struct_literal: false }
}
}
fn peek(&mut self) -> TokenType {
self.tokens.peek().map(|ref t| { t.token_type.clone() }).unwrap_or(TokenType::EOF)
}
fn peek_with_token_offset(&mut self) -> Token {
self.tokens.peek().map(|t: &Token| { t.clone()}).unwrap_or(Token { token_type: TokenType::EOF, offset: (0,0)})
}
fn next(&mut self) -> TokenType {
self.tokens.next().map(|ref t| { t.token_type.clone() }).unwrap_or(TokenType::EOF)
}
}
macro_rules! print_token_pattern {
($tokenpattern:pat) => { stringify!($tokenpattern) }
}
macro_rules! expect {
($self:expr, $token_type:pat) => { expect!($self, $token_type if true) };
($self:expr, $token_type:pat if $cond:expr) => {
match $self.peek() {
$token_type if $cond => $self.next(),
tok => {
let msg = format!("Expected {}, got {:?}", print_token_pattern!($token_type), tok);
return Err(ParseError { msg })
}
}
}
}
#[derive(Debug, PartialEq)]
pub struct AST(pub Vec<Statement>);
#[derive(Debug, PartialEq, Clone)]
pub enum Statement {
ExpressionStatement(Expression),
Declaration(Declaration),
}
type Block = Vec<Statement>;
type ParamName = Rc<String>;
type InterfaceName = Rc<String>; //should be a singleton I think??
type FormalParam = (ParamName, Option<TypeName>);
#[derive(Debug, PartialEq, Clone)]
pub enum Declaration {
FuncSig(Signature),
FuncDecl(Signature, Block),
TypeDecl(TypeSingletonName, TypeBody), //should have TypeSingletonName in it
TypeAlias(Rc<String>, Rc<String>), //should have TypeSingletonName in it, or maybe just String, not sure
Binding {
name: Rc<String>,
constant: bool,
expr: Expression,
},
Impl {
type_name: TypeName,
interface_name: Option<InterfaceName>,
block: Vec<Declaration>,
},
Interface {
name: Rc<String>,
signatures: Vec<Signature>
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct Signature {
pub name: Rc<String>,
pub params: Vec<FormalParam>,
pub type_anno: Option<TypeName>,
}
#[derive(Debug, PartialEq, Clone)]
pub struct TypeBody(pub Vec<Variant>);
#[derive(Debug, PartialEq, Clone)]
pub enum Variant {
UnitStruct(Rc<String>),
TupleStruct(Rc<String>, Vec<TypeName>),
Record(Rc<String>, Vec<(Rc<String>, TypeName)>),
}
#[derive(Debug, PartialEq, Clone)]
pub struct Expression(pub ExpressionType, pub Option<TypeName>);
#[derive(Debug, PartialEq, Clone)]
pub enum TypeName {
Tuple(Vec<TypeName>),
Singleton(TypeSingletonName)
}
#[derive(Debug, PartialEq, Clone)]
pub struct TypeSingletonName {
pub name: Rc<String>,
pub params: Vec<TypeName>,
}
#[derive(Debug, PartialEq, Clone)]
pub enum ExpressionType {
NatLiteral(u64),
FloatLiteral(f64),
StringLiteral(Rc<String>),
BoolLiteral(bool),
BinExp(BinOp, Box<Expression>, Box<Expression>),
PrefixExp(PrefixOp, Box<Expression>),
TupleLiteral(Vec<Expression>),
Value(Rc<String>),
NamedStruct {
name: Rc<String>,
fields: Vec<(Rc<String>, Expression)>,
},
Call {
f: Box<Expression>,
arguments: Vec<Expression>,
},
Index {
indexee: Box<Expression>,
indexers: Vec<Expression>,
},
IfExpression(Box<Expression>, Block, Option<Block>),
MatchExpression(Box<Expression>, Vec<MatchArm>),
WhileExpression {
condition: Option<Box<Expression>>,
body: Block,
},
ForExpression {
enumerators: Vec<Enumerator>,
body: Box<ForBody>,
},
Lambda {
params: Vec<FormalParam>,
body: Block,
},
ListLiteral(Vec<Expression>),
}
#[derive(Debug, PartialEq, Clone)]
pub struct Enumerator {
id: Rc<String>,
generator: Expression,
}
#[derive(Debug, PartialEq, Clone)]
pub enum ForBody {
MonadicReturn(Expression),
StatementBlock(Block),
}
#[derive(Debug, PartialEq, Clone)]
pub struct MatchArm {
pat: Pattern,
expr: Expression,
}
#[derive(Debug, PartialEq, Clone)]
pub struct Pattern(Rc<String>);
macro_rules! parse_method {
($name:ident(&mut $self:ident) -> $type:ty $body:block) => {
fn $name(&mut $self) -> $type {
let next_token = $self.peek_with_token_offset();
let record = ParseRecord {
production_name: stringify!($name).to_string(),
next_token: format!("{}", next_token.to_string_with_metadata()),
level: $self.parse_level,
};
$self.parse_level += 1;
$self.parse_record.push(record);
let result = { $body };
if $self.parse_level != 0 {
$self.parse_level -= 1;
}
result
}
};
}
macro_rules! delimited {
($self:expr, $start:pat, $start_str:expr, $parse_fn:ident, $( $delim:pat )|+, $end:pat, $end_str:expr, nonstrict) => {
delimited!($self, $start, $start_str, $parse_fn, $( $delim )|*, $end, $end_str, false)
};
($self:expr, $start:pat, $start_str:expr, $parse_fn:ident, $( $delim:pat )|+, $end:pat, $end_str:expr) => {
delimited!($self, $start, $start_str, $parse_fn, $( $delim )|*, $end, $end_str, true)
};
($self:expr, $start:pat, $start_str:expr, $parse_fn:ident, $( $delim:pat )|+, $end:pat, $end_str:expr, $strictness:expr) => {
{
expect!($self, $start);
let mut acc = vec![];
loop {
let peek = $self.peek();
match peek {
$end | EOF => break,
_ => (),
}
if !$strictness {
match peek {
$( $delim )|* => { $self.next(); continue },
_ => ()
}
}
acc.push($self.$parse_fn()?);
match $self.peek() {
$( $delim )|* => { $self.next(); continue },
_ if $strictness => break,
_ => continue,
};
}
expect!($self, $end);
acc
}
};
}
impl Parser {
parse_method!(program(&mut self) -> ParseResult<AST> {
let mut statements = Vec::new();
loop {
match self.peek() {
EOF => break,
Newline | Semicolon => {
self.next();
continue;
},
_ => statements.push(self.statement()?),
}
}
Ok(AST(statements))
});
parse_method!(statement(&mut self) -> ParseResult<Statement> {
//TODO handle error recovery here
match self.peek() {
Keyword(Type) => self.type_declaration().map(|decl| { Statement::Declaration(decl) }),
Keyword(Func)=> self.func_declaration().map(|func| { Statement::Declaration(func) }),
Keyword(Var) | Keyword(Const) => self.binding_declaration().map(|decl| Statement::Declaration(decl)),
Keyword(Interface) => self.interface_declaration().map(|decl| Statement::Declaration(decl)),
Keyword(Impl) => self.impl_declaration().map(|decl| Statement::Declaration(decl)),
_ => self.expression().map(|expr| { Statement::ExpressionStatement(expr) } ),
}
});
parse_method!(type_declaration(&mut self) -> ParseResult<Declaration> {
expect!(self, Keyword(Type));
self.type_declaration_body()
});
parse_method!(type_declaration_body(&mut self) -> ParseResult<Declaration> {
if let Keyword(Alias) = self.peek() {
self.type_alias()
} else {
let name = self.type_singleton_name()?;
expect!(self, Operator(ref c) if **c == "=");
let body = self.type_body()?;
Ok(Declaration::TypeDecl(name, body))
}
});
parse_method!(type_alias(&mut self) -> ParseResult<Declaration> {
expect!(self, Keyword(Alias));
let alias = self.identifier()?;
expect!(self, Operator(ref c) if **c == "=");
let original = self.identifier()?;
Ok(Declaration::TypeAlias(alias, original))
});
parse_method!(type_body(&mut self) -> ParseResult<TypeBody> {
let mut variants = Vec::new();
variants.push(self.variant_specifier()?);
loop {
if let Pipe = self.peek() {
self.next();
variants.push(self.variant_specifier()?);
} else {
break;
}
}
Ok(TypeBody(variants))
});
parse_method!(variant_specifier(&mut self) -> ParseResult<Variant> {
use self::Variant::*;
let name = self.identifier()?;
match self.peek() {
LParen => {
let tuple_members = delimited!(self, LParen, '(', type_name, Comma, RParen, ')');
Ok(TupleStruct(name, tuple_members))
},
LCurlyBrace => {
let typed_identifier_list = delimited!(self, LCurlyBrace, '{', typed_identifier, Comma, RCurlyBrace, '}');
Ok(Record(name, typed_identifier_list))
},
_ => Ok(UnitStruct(name))
}
});
parse_method!(typed_identifier(&mut self) -> ParseResult<(Rc<String>, TypeName)> {
let identifier = self.identifier()?;
expect!(self, Colon);
let type_name = self.type_name()?;
Ok((identifier, type_name))
});
parse_method!(func_declaration(&mut self) -> ParseResult<Declaration> {
let signature = self.signature()?;
if let LCurlyBrace = self.peek() {
let statements = delimited!(self, LCurlyBrace, '{', statement, Newline | Semicolon, RCurlyBrace, '}', nonstrict);
Ok(Declaration::FuncDecl(signature, statements))
} else {
Ok(Declaration::FuncSig(signature))
}
});
parse_method!(signature(&mut self) -> ParseResult<Signature> {
expect!(self, Keyword(Func));
let name = self.identifier()?;
let params = delimited!(self, LParen, '(', formal_param, Comma, RParen, ')');
let type_anno = match self.peek() {
Colon => Some(self.type_anno()?),
_ => None,
};
Ok(Signature { name, params, type_anno })
});
parse_method!(formal_param(&mut self) -> ParseResult<FormalParam> {
let name = self.identifier()?;
let ty = match self.peek() {
Colon => Some(self.type_anno()?),
_ => None
};
Ok((name, ty))
});
parse_method!(binding_declaration(&mut self) -> ParseResult<Declaration> {
let constant = match self.next() {
Keyword(Var) => false,
Keyword(Const) => true,
_ => return ParseError::new("Expected 'var' or 'const'"),
};
let name = self.identifier()?;
expect!(self, Operator(ref o) if **o == "=");
let expr = self.expression()?;
Ok(Declaration::Binding { name, constant, expr })
});
parse_method!(interface_declaration(&mut self) -> ParseResult<Declaration> {
expect!(self, Keyword(Interface));
let name = self.identifier()?;
let signatures = self.signature_block()?;
Ok(Declaration::Interface { name, signatures })
});
parse_method!(signature_block(&mut self) -> ParseResult<Vec<Signature>> {
Ok(delimited!(self, LCurlyBrace, '{', signature, Newline | Semicolon, RCurlyBrace, '}', nonstrict))
});
parse_method!(impl_declaration(&mut self) -> ParseResult<Declaration> {
expect!(self, Keyword(Impl));
let first = self.type_name()?;
let second = if let Keyword(For) = self.peek() {
self.next();
Some(self.type_name()?)
} else {
None
};
let block = self.decl_block()?;
let result = match (first, second) {
(first, Some(second)) => {
match first {
TypeName::Singleton(TypeSingletonName { ref name, ref params }) if params.len() == 0 =>
Declaration::Impl { type_name: second, interface_name: Some(name.clone()), block },
_ => return ParseError::new(&format!("Invalid name for an interface")),
}
},
(first, None) => Declaration::Impl { type_name: first, interface_name: None, block }
};
Ok(result)
});
parse_method!(decl_block(&mut self) -> ParseResult<Vec<Declaration>> {
Ok(delimited!(self, LCurlyBrace, '{', func_declaration, Newline | Semicolon, RCurlyBrace, '}', nonstrict))
});
parse_method!(expression(&mut self) -> ParseResult<Expression> {
let mut expr_body = self.precedence_expr(BinOp::min_precedence())?;
let type_anno = match self.peek() {
Colon => Some(self.type_anno()?),
_ => None
};
if let Some(_) = expr_body.1 {
return ParseError::new("Bad parse state");
}
expr_body.1 = type_anno;
Ok(expr_body)
});
parse_method!(type_anno(&mut self) -> ParseResult<TypeName> {
expect!(self, Colon);
self.type_name()
});
parse_method!(type_name(&mut self) -> ParseResult<TypeName> {
use self::TypeName::*;
Ok(match self.peek() {
LParen => Tuple(delimited!(self, LParen, '(', type_name, Comma, RParen, ')')),
_ => Singleton(self.type_singleton_name()?),
})
});
parse_method!(type_singleton_name(&mut self) -> ParseResult<TypeSingletonName> {
Ok(TypeSingletonName {
name: self.identifier()?,
params: match self.peek() {
LAngleBracket => delimited!(self, LAngleBracket, '<', type_name, Comma, RAngleBracket, '>'),
_ => vec![],
}
})
});
// this implements Pratt parsing, see http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/
fn precedence_expr(&mut self, precedence: i32) -> ParseResult<Expression> {
let record = ParseRecord {
production_name: "precedence_expr".to_string(),
next_token: format!("{}", self.peek_with_token_offset().to_string_with_metadata()),
level: self.parse_level,
};
self.parse_level += 1;
self.parse_record.push(record);
let mut lhs = self.prefix_expr()?;
loop {
let new_precedence = match self.peek() {
Operator(op) => BinOp::get_precedence(&*op),
Period => BinOp::get_precedence("."),
Pipe => BinOp::get_precedence("|"),
Slash => BinOp::get_precedence("/"),
_ => break,
};
if precedence >= new_precedence {
break;
}
let sigil = match self.next() {
Operator(op) => op,
Period => Rc::new(".".to_string()),
Pipe => Rc::new("|".to_string()),
Slash => Rc::new("/".to_string()),
_ => unreachable!(),
};
let rhs = self.precedence_expr(new_precedence)?;
let operation = BinOp::from_sigil(sigil.as_ref());
lhs = Expression(ExpressionType::BinExp(operation, bx!(lhs), bx!(rhs)), None);
}
self.parse_level -= 1;
Ok(lhs)
}
parse_method!(prefix_expr(&mut self) -> ParseResult<Expression> {
match self.peek() {
Operator(ref op) if PrefixOp::is_prefix(&*op) => {
let sigil = match self.next() {
Operator(op) => op,
_ => unreachable!(),
};
let expr = self.primary()?;
Ok(Expression(
ExpressionType::PrefixExp(PrefixOp::from_sigil(sigil.as_str()), bx!(expr)),
None))
},
_ => self.call_expr()
}
});
parse_method!(call_expr(&mut self) -> ParseResult<Expression> {
let index = self.index_expr()?;
Ok(if let LParen = self.peek() {
let arguments = delimited!(self, LParen, ')', expression, Comma, RParen, '(');
Expression(ExpressionType::Call { f: bx!(index), arguments }, None) //TODO fix this none
} else {
index
})
});
parse_method!(index_expr(&mut self) -> ParseResult<Expression> {
let primary = self.primary()?;
Ok(if let LSquareBracket = self.peek() {
let indexers = delimited!(self, LSquareBracket, '[', expression, Comma, RSquareBracket, ']');
Expression(ExpressionType::Index {
indexee: bx!(Expression(primary.0, None)),
indexers,
}, None)
} else {
primary
})
});
parse_method!(primary(&mut self) -> ParseResult<Expression> {
match self.peek() {
LCurlyBrace => self.curly_brace_expr(),
LParen => self.paren_expr(),
LSquareBracket => self.list_expr(),
Keyword(Kw::If) => self.if_expr(),
Keyword(Kw::Match) => self.match_expr(),
Keyword(Kw::For) => self.for_expr(),
Keyword(Kw::While) => self.while_expr(),
Identifier(_) => self.identifier_expr(),
_ => self.literal(),
}
});
parse_method!(list_expr(&mut self) -> ParseResult<Expression> {
let exprs = delimited!(self, LSquareBracket, '[', expression, Comma, RSquareBracket, ']');
Ok(Expression(ExpressionType::ListLiteral(exprs), None))
});
parse_method!(curly_brace_expr(&mut self) -> ParseResult<Expression> {
self.lambda_expr()
});
parse_method!(lambda_expr(&mut self) -> ParseResult<Expression> {
expect!(self, LCurlyBrace);
let params = delimited!(self, Pipe, '|', formal_param, Comma, Pipe, '|');
let mut body = Vec::new();
loop {
match self.peek() {
EOF | RCurlyBrace => break,
Newline | Semicolon => {
self.next();
continue;
},
_ => body.push(self.statement()?),
}
}
expect!(self, RCurlyBrace);
Ok(Expression(ExpressionType::Lambda { params, body }, None)) //TODO need to handle types somehow
});
parse_method!(paren_expr(&mut self) -> ParseResult<Expression> {
use self::ExpressionType::*;
let old_struct_value = self.restrictions.no_struct_literal;
self.restrictions.no_struct_literal = false;
let output = {
let mut inner = delimited!(self, LParen, '(', expression, Comma, RParen, ')');
match inner.len() {
0 => Ok(Expression(TupleLiteral(vec![]), None)),
1 => Ok(inner.pop().unwrap()),
_ => Ok(Expression(TupleLiteral(inner), None)),
}
};
self.restrictions.no_struct_literal = old_struct_value;
output
});
parse_method!(identifier_expr(&mut self) -> ParseResult<Expression> {
use self::ExpressionType::*;
let identifier = self.identifier()?;
Ok(match self.peek() {
LCurlyBrace if !self.restrictions.no_struct_literal => {
let fields = self.record_block()?;
Expression(NamedStruct { name: identifier, fields }, None)
},
_ => Expression(Value(identifier), None)
})
});
parse_method!(record_block(&mut self) -> ParseResult<Vec<(Rc<String>, Expression)>> {
Ok(delimited!(self, LCurlyBrace, '{', record_entry, Comma, RCurlyBrace, '}'))
});
parse_method!(record_entry(&mut self) -> ParseResult<(Rc<String>, Expression)> {
let field_name = self.identifier()?;
expect!(self, Colon);
let value = self.expression()?;
Ok((field_name, value))
});
parse_method!(if_expr(&mut self) -> ParseResult<Expression> {
expect!(self, Keyword(Kw::If));
let condition = {
self.restrictions.no_struct_literal = true;
let x = self.expression();
self.restrictions.no_struct_literal = false;
x?
};
let then_clause = self.block()?;
let else_clause = self.else_clause()?;
Ok(Expression(ExpressionType::IfExpression(bx!(condition), then_clause, else_clause), None))
});
parse_method!(else_clause(&mut self) -> ParseResult<Option<Block>> {
Ok(if let Keyword(Kw::Else) = self.peek() {
self.next();
Some(self.block()?)
} else {
None
})
});
parse_method!(block(&mut self) -> ParseResult<Block> {
Ok(delimited!(self, LCurlyBrace, '{', statement, Newline | Semicolon, RCurlyBrace, '}', nonstrict))
});
parse_method!(match_expr(&mut self) -> ParseResult<Expression> {
expect!(self, Keyword(Kw::Match));
let expr = self.expression()?;
//TODO abstract these errors into the delimited macro
//expect!(self, LCurlyBrace, "Expected '{'");
let body = self.match_body()?;
//expect!(self, RCurlyBrace, "Expected '}'");
Ok(Expression(ExpressionType::MatchExpression(bx!(expr), body), None))
});
parse_method!(match_body(&mut self) -> ParseResult<Vec<MatchArm>> {
Ok(delimited!(self, LCurlyBrace, '{', match_arm, Comma, RCurlyBrace, '}'))
});
parse_method!(match_arm(&mut self) -> ParseResult<MatchArm> {
let pat = self.pattern()?;
expect!(self, Operator(ref c) if **c == "=>");
let expr = self.expression()?;
Ok(MatchArm { pat, expr })
});
parse_method!(pattern(&mut self) -> ParseResult<Pattern> {
let identifier = self.identifier()?;
Ok(Pattern(identifier))
});
parse_method!(while_expr(&mut self) -> ParseResult<Expression> {
use self::ExpressionType::*;
expect!(self, Keyword(Kw::While));
let condition = {
self.restrictions.no_struct_literal = true;
let x = self.while_cond();
self.restrictions.no_struct_literal = false;
x?.map(|expr| bx!(expr))
};
let body = self.block()?;
Ok(Expression(WhileExpression {condition, body}, None))
});
parse_method!(while_cond(&mut self) -> ParseResult<Option<Expression>> {
Ok(match self.peek() {
LCurlyBrace => None,
_ => Some(self.expression()?),
})
});
parse_method!(for_expr(&mut self) -> ParseResult<Expression> {
expect!(self, Keyword(Kw::For));
let enumerators = if let LCurlyBrace = self.peek() {
delimited!(self, LCurlyBrace, '{', enumerator, Comma | Newline, RCurlyBrace, '}')
} else {
let single_enum = {
self.restrictions.no_struct_literal = true;
let s = self.enumerator();
self.restrictions.no_struct_literal = false;
s?
};
vec![single_enum]
};
let body = Box::new(self.for_expr_body()?);
Ok(Expression(ExpressionType::ForExpression { enumerators, body }, None))
});
parse_method!(enumerator(&mut self) -> ParseResult<Enumerator> {
let id = self.identifier()?;
expect!(self, Operator(ref c) if **c == "<-");
let generator = self.expression()?;
Ok(Enumerator { id, generator })
});
parse_method!(for_expr_body(&mut self) -> ParseResult<ForBody> {
use self::ForBody::*;
Ok(match self.peek() {
LCurlyBrace => {
let statements = delimited!(self, LCurlyBrace, '{', statement, Newline | Semicolon, RCurlyBrace, '}', nonstrict);
StatementBlock(statements)
},
Keyword(Kw::Return) => {
self.next();
MonadicReturn(self.expression()?)
},
_ => return ParseError::new("for expressions must end in a block or 'return'"),
})
});
parse_method!(identifier(&mut self) -> ParseResult<Rc<String>> {
match self.next() {
Identifier(s) => Ok(s),
p => ParseError::new(&format!("Expected an identifier, got {:?}", p)),
}
});
parse_method!(literal(&mut self) -> ParseResult<Expression> {
use self::ExpressionType::*;
match self.peek() {
DigitGroup(_) | HexLiteral(_) | BinNumberSigil | Period => self.number_literal(),
Keyword(Kw::True) => {
self.next();
Ok(Expression(BoolLiteral(true), None))
},
Keyword(Kw::False) => {
self.next();
Ok(Expression(BoolLiteral(false), None))
},
StrLiteral(s) => {
self.next();
Ok(Expression(StringLiteral(s), None))
}
e => ParseError::new(&format!("Expected a literal expression, got {:?}", e)),
}
});
parse_method!(number_literal(&mut self) -> ParseResult<Expression> {
match self.peek() {
HexLiteral(_) | BinNumberSigil => self.int_literal(),
_ => self.float_literal(),
}
});
parse_method!(int_literal(&mut self) -> ParseResult<Expression> {
use self::ExpressionType::*;
match self.next() {
BinNumberSigil => {
let digits = self.digits()?;
let n = parse_binary(digits)?;
Ok(Expression(NatLiteral(n), None))
},
HexLiteral(text) => {
let digits: String = text.chars().filter(|c| c.is_digit(16)).collect();
let n = parse_hex(digits)?;
Ok(Expression(NatLiteral(n), None))
},
_ => return ParseError::new("Expected '0x' or '0b'"),
}
});
parse_method!(float_literal(&mut self) -> ParseResult<Expression> {
use self::ExpressionType::*;
let mut digits = self.digits()?;
if let TokenType::Period = self.peek() {
self.next();
digits.push_str(".");
digits.push_str(&self.digits()?);
match digits.parse::<f64>() {
Ok(f) => Ok(Expression(FloatLiteral(f), None)),
Err(e) => ParseError::new(&format!("Float failed to parse with error: {}", e)),
}
} else {
match digits.parse::<u64>() {
Ok(d) => Ok(Expression(NatLiteral(d), None)),
Err(e) => ParseError::new(&format!("Integer failed to parse with error: {}", e)),
}
}
});
parse_method!(digits(&mut self) -> ParseResult<String> {
let mut ds = String::new();
loop {
match self.peek() {
Underscore => { self.next(); continue; },
DigitGroup(ref s) => { self.next(); ds.push_str(s)},
_ => break,
}
}
Ok(ds)
});
}
fn parse_binary(digits: String) -> ParseResult<u64> {
let mut result: u64 = 0;
let mut multiplier = 1;
for d in digits.chars().rev() {
match d {
'1' => result += multiplier,
'0' => (),
_ => return ParseError::new("Encountered a character not '1' or '0 while parsing a binary literal"),
}
multiplier = match multiplier.checked_mul(2) {
Some(m) => m,
None => return ParseError::new("This binary expression will overflow")
}
}
Ok(result)
}
fn parse_hex(digits: String) -> ParseResult<u64> {
let mut result: u64 = 0;
let mut multiplier: u64 = 1;
for d in digits.chars().rev() {
match d.to_digit(16) {
Some(n) => result += n as u64 * multiplier,
None => return ParseError::new("Encountered a non-hex digit in a hex literal"),
}
multiplier = match multiplier.checked_mul(16) {
Some(m) => m,
None => return ParseError::new("This hex expression will overflow")
}
}
Ok(result)
}
pub fn parse(input: Vec<Token>) -> (Result<AST, ParseError>, Vec<String>) {
let mut parser = Parser::new(input);
let ast = parser.program();
let trace = parser.parse_record.into_iter().map(|r| {
let mut indent = String::new();
for _ in 0..r.level {
indent.push(' ');
}
format!("{}Production `{}`, token: {}", indent, r.production_name, r.next_token)
}).collect();
(ast, trace)
}
#[cfg(test)]
mod parse_tests {
use ::std::rc::Rc;
use super::{AST, Expression, Statement, PrefixOp, BinOp, TypeBody, Variant, Enumerator, ForBody, parse, tokenize};
use super::Statement::*;
use super::Declaration::*;
use super::Signature;
use super::TypeName::*;
use super::TypeSingletonName;
use super::ExpressionType::*;
use super::Variant::*;
use super::ForBody::*;
macro_rules! rc {
($string:tt) => { Rc::new(stringify!($string).to_string()) }
}
macro_rules! parse_test {
($string:expr, $correct:expr) => { assert_eq!(parse(tokenize($string)).0.unwrap(), $correct) }
}
macro_rules! parse_error {
($string:expr) => { assert!(parse(tokenize($string)).0.is_err()) }
}
macro_rules! val {
($var:expr) => { Value(Rc::new($var.to_string())) }
}
macro_rules! exprstatement {
($expr_type:expr) => { Statement::ExpressionStatement(Expression($expr_type, None)) };
($expr_type:expr, $type_anno:expr) => { Statement::ExpressionStatement(Expression($expr_type, Some($type_anno))) };
}
macro_rules! ty {
($name:expr) => { Singleton(tys!($name)) }
}
macro_rules! tys {
($name:expr) => { TypeSingletonName { name: Rc::new($name.to_string()), params: vec![] } };
}
/* new style of test macros */
macro_rules! single_expr {
($exprtype:expr) => { AST(vec![Statement::ExpressionStatement(Expression($exprtype, None))]) };
($exprtype:expr, $type:expr) => { AST(vec![Statement::ExpressionStatement(Expression($exprtype, $type))]) }
}
macro_rules! ex {
($expr_type:expr) => { Expression($expr_type, None) }
}
macro_rules! binexp {
($op:expr, $lhs:expr, $rhs:expr) => { BinExp(BinOp::from_sigil($op), bx!(Expression($lhs, None)), bx!(Expression($rhs, None))) }
}
macro_rules! prefexp {
($op:expr, $lhs:expr) => { PrefixExp(PrefixOp::from_sigil($op), bx!(Expression($lhs, None))) }
}
macro_rules! exst {
($expr_type:expr) => { Statement::ExpressionStatement(Expression($expr_type, None)) };
($expr_type:expr, $type_anno:expr) => { Statement::ExpressionStatement(Expression($expr_type, Some($type_anno))) };
($op:expr, $lhs:expr, $rhs:expr) => { Statement::ExpressionStatement(ex!(binexp!($op, $lhs, $rhs))) };
}
#[test]
fn parsing_number_literals_and_binexps() {
parse_test! { ".2", single_expr!(FloatLiteral(0.2)) };
parse_test! { "8.1", single_expr!(FloatLiteral(8.1)) };
parse_test! { "0b010", single_expr!(NatLiteral(2)) };
parse_test! { "0b0_1_0_", single_expr!(NatLiteral(2)) }
parse_test! {"0xff", single_expr!(NatLiteral(255)) };
parse_test! {"0xf_f_", single_expr!(NatLiteral(255)) };
parse_test!("0xf_f_+1", AST(vec![exprstatement!(binexp!("+", NatLiteral(255), NatLiteral(1)))]));
parse_test! {"3; 4; 4.3", AST(
vec![exprstatement!(NatLiteral(3)), exprstatement!(NatLiteral(4)),
exprstatement!(FloatLiteral(4.3))])
};
parse_test!("1 + 2 * 3", AST(vec!
[
exprstatement!(binexp!("+", NatLiteral(1), binexp!("*", NatLiteral(2), NatLiteral(3))))
]));
parse_test!("1 * 2 + 3", AST(vec!
[
exprstatement!(binexp!("+", binexp!("*", NatLiteral(1), NatLiteral(2)), NatLiteral(3)))
]));
parse_test!("1 && 2", AST(vec![exprstatement!(binexp!("&&", NatLiteral(1), NatLiteral(2)))]));
parse_test!("1 + 2 * 3 + 4", AST(vec![exprstatement!(
binexp!("+",
binexp!("+", NatLiteral(1), binexp!("*", NatLiteral(2), NatLiteral(3))),
NatLiteral(4)))]));
parse_test!("(1 + 2) * 3", AST(vec!
[exprstatement!(binexp!("*", binexp!("+", NatLiteral(1), NatLiteral(2)), NatLiteral(3)))]));
parse_test!(".1 + .2", AST(vec![exprstatement!(binexp!("+", FloatLiteral(0.1), FloatLiteral(0.2)))]));
parse_test!("1 / 2", AST(vec![exprstatement!(binexp!("/", NatLiteral(1), NatLiteral(2)))]));
}
#[test]
fn parsing_tuples() {
parse_test!("()", AST(vec![exprstatement!(TupleLiteral(vec![]))]));
parse_test!("(\"hella\", 34)", AST(vec![exprstatement!(
TupleLiteral(
vec![ex!(StringLiteral(rc!(hella))), ex!(NatLiteral(34))]
)
)]));
parse_test!("((1+2), \"slough\")", AST(vec![exprstatement!(TupleLiteral(vec![
ex!(binexp!("+", NatLiteral(1), NatLiteral(2))),
ex!(StringLiteral(rc!(slough))),
]))]))
}
#[test]
fn parsing_identifiers() {
parse_test!("a", AST(vec![exprstatement!(val!("a"))]));
parse_test!("a + b", AST(vec![exprstatement!(binexp!("+", val!("a"), val!("b")))]));
//parse_test!("a[b]", AST(vec![Expression(
//parse_test!("a[]", <- TODO THIS NEEDS TO FAIL
//parse_test!(damn()[a] ,<- TODO needs to succeed
parse_test!("a[b,c]", AST(vec![exprstatement!(Index { indexee: bx!(ex!(val!("a"))), indexers: vec![ex!(val!("b")), ex!(val!("c"))]} )]));
parse_test!("None", AST(vec![exprstatement!(val!("None"))]));
parse_test!("Pandas { a: x + y }", AST(vec![
exprstatement!(NamedStruct { name: rc!(Pandas), fields: vec![(rc!(a), ex!(binexp!("+", val!("x"), val!("y"))))]})
]));
}
#[test]
fn parsing_complicated_operators() {
parse_test!("a <- b", AST(vec![exprstatement!(binexp!("<-", val!("a"), val!("b")))]));
parse_test!("a || b", AST(vec![exprstatement!(binexp!("||", val!("a"), val!("b")))]));
parse_test!("a<>b", AST(vec![exprstatement!(binexp!("<>", val!("a"), val!("b")))]));
parse_test!("a.b.c.d", AST(vec![exprstatement!(binexp!(".",
binexp!(".",
binexp!(".", val!("a"), val!("b")),
val!("c")),
val!("d")))]));
parse_test!("-3", AST(vec![exprstatement!(prefexp!("-", NatLiteral(3)))]));
parse_test!("-0.2", AST(vec![exprstatement!(prefexp!("-", FloatLiteral(0.2)))]));
parse_test!("!3", AST(vec![exprstatement!(prefexp!("!", NatLiteral(3)))]));
parse_test!("a <- -b", AST(vec![exprstatement!(binexp!("<-", val!("a"), prefexp!("-", val!("b"))))]));
parse_test!("a <--b", AST(vec![exprstatement!(binexp!("<--", val!("a"), val!("b")))]));
}
#[test]
fn parsing_functions() {
parse_test!("fn oi()", AST(vec![Declaration(FuncSig(Signature { name: rc!(oi), params: vec![], type_anno: None }))]));
parse_test!("oi()", AST(vec![exprstatement!(Call { f: bx!(ex!(val!("oi"))), arguments: vec![] })]));
parse_test!("oi(a, 2 + 2)", AST(vec![exprstatement!(Call
{ f: bx!(ex!(val!("oi"))),
arguments: vec![ex!(val!("a")), ex!(binexp!("+", NatLiteral(2), NatLiteral(2)))]
})]));
parse_error!("a(b,,c)");
parse_test!("fn a(b, c: Int): Int", AST(vec![Declaration(
FuncSig(Signature { name: rc!(a), params: vec![
(rc!(b), None), (rc!(c), Some(ty!("Int")))
], type_anno: Some(ty!("Int")) }))]));
parse_test!("fn a(x) { x() }", AST(vec![Declaration(
FuncDecl(Signature { name: rc!(a), params: vec![(rc!(x),None)], type_anno: None },
vec![exprstatement!(Call { f: bx!(ex!(val!("x"))), arguments: vec![] })]))]));
parse_test!("fn a(x) {\n x() }", AST(vec![Declaration(
FuncDecl(Signature { name: rc!(a), params: vec![(rc!(x),None)], type_anno: None },
vec![exprstatement!(Call { f: bx!(ex!(val!("x"))), arguments: vec![] })]))]));
let multiline = r#"
fn a(x) {
x()
}
"#;
parse_test!(multiline, AST(vec![Declaration(
FuncDecl(Signature { name: rc!(a), params: vec![(rc!(x),None)], type_anno: None },
vec![exprstatement!(Call { f: bx!(ex!(val!("x"))), arguments: vec![] })]))]));
let multiline2 = r#"
fn a(x) {
x()
}
"#;
parse_test!(multiline2, AST(vec![Declaration(
FuncDecl(Signature { name: rc!(a), params: vec![(rc!(x),None)], type_anno: None },
vec![exprstatement!(Call { f: bx!(ex!(val!("x"))), arguments: vec![] })]))]));
}
#[test]
fn parsing_bools() {
parse_test!("false", AST(vec![exprstatement!(BoolLiteral(false))]));
parse_test!("true", AST(vec![exprstatement!(BoolLiteral(true))]));
}
#[test]
fn parsing_strings() {
parse_test!(r#""hello""#, AST(vec![exprstatement!(StringLiteral(rc!(hello)))]));
}
#[test]
fn parsing_types() {
parse_test!("type Yolo = Yolo", AST(vec![Declaration(TypeDecl(tys!("Yolo"), TypeBody(vec![UnitStruct(rc!(Yolo))])))]));
parse_test!("type alias Sex = Drugs", AST(vec![Declaration(TypeAlias(rc!(Sex), rc!(Drugs)))]));
parse_test!("type Sanchez = Miguel | Alejandro(Int, Option<a>) | Esperanza { a: Int, b: String }",
AST(vec![Declaration(TypeDecl(tys!("Sanchez"), TypeBody(vec![
UnitStruct(rc!(Miguel)),
TupleStruct(rc!(Alejandro), vec![
Singleton(TypeSingletonName { name: rc!(Int), params: vec![] }),
Singleton(TypeSingletonName { name: rc!(Option), params: vec![Singleton(TypeSingletonName { name: rc!(a), params: vec![] })] }),
]),
Record(rc!(Esperanza), vec![
(rc!(a), Singleton(TypeSingletonName { name: rc!(Int), params: vec![] })),
(rc!(b), Singleton(TypeSingletonName { name: rc!(String), params: vec![] })),
])])))]));
parse_test!("type Jorge<a> = Diego | Kike(a)", AST(vec![
Declaration(TypeDecl(
TypeSingletonName { name: rc!(Jorge), params: vec![Singleton(TypeSingletonName { name: rc!(a), params: vec![] })] },
TypeBody(vec![UnitStruct(rc!(Diego)), TupleStruct(rc!(Kike), vec![Singleton(TypeSingletonName { name: rc!(a), params: vec![] })])]))
)]));
}
#[test]
fn parsing_bindings() {
parse_test!("var a = 10", AST(vec![Declaration(Binding { name: rc!(a), constant: false, expr: ex!(NatLiteral(10)) } )]));
parse_test!("const a = 2 + 2", AST(vec![Declaration(Binding { name: rc!(a), constant: true, expr: ex!(binexp!("+", NatLiteral(2), NatLiteral(2))) }) ]));
}
#[test]
fn parsing_block_expressions() {
parse_test!("if a() { b(); c() }", AST(vec![exprstatement!(
IfExpression(bx!(ex!(Call { f: bx!(ex!(val!("a"))), arguments: vec![]})),
vec![exprstatement!(Call { f: bx!(ex!(val!("b"))), arguments: vec![]}), exprstatement!(Call { f: bx!(ex!(val!("c"))), arguments: vec![] })],
None)
)]));
parse_test!(r#"
if true {
const a = 10
b
} else {
c
}"#,
AST(vec![exprstatement!(IfExpression(bx!(ex!(BoolLiteral(true))),
vec![Declaration(Binding { name: rc!(a), constant: true, expr: ex!(NatLiteral(10)) }),
exprstatement!(val!(rc!(b)))],
Some(vec![exprstatement!(val!(rc!(c)))])))])
);
parse_test!("if a { b } else { c }", AST(vec![exprstatement!(
IfExpression(bx!(ex!(val!("a"))),
vec![exprstatement!(val!("b"))],
Some(vec![exprstatement!(val!("c"))])))]));
parse_test!("if (A {a: 1}) { b } else { c }", AST(vec![exprstatement!(
IfExpression(bx!(ex!(NamedStruct { name: rc!(A), fields: vec![(rc!(a), ex!(NatLiteral(1)))]})),
vec![exprstatement!(val!("b"))],
Some(vec![exprstatement!(val!("c"))])))]));
parse_error!("if A {a: 1} { b } else { c }");
}
#[test]
fn parsing_interfaces() {
parse_test!("interface Unglueable { fn unglue(a: Glue); fn mar(): Glue }", AST(vec![
Declaration(Interface {
name: rc!(Unglueable),
signatures: vec![
Signature { name: rc!(unglue), params: vec![(rc!(a), Some(Singleton(TypeSingletonName { name: rc!(Glue), params: vec![] })))], type_anno: None },
Signature { name: rc!(mar), params: vec![], type_anno: Some(Singleton(TypeSingletonName { name: rc!(Glue), params: vec![] })) },
]
})
]));
}
#[test]
fn parsing_impls() {
parse_test!("impl Heh { fn yolo(); fn swagg(); }", AST(vec![
Declaration(Impl {
type_name: ty!("Heh"),
interface_name: None,
block: vec![
FuncSig(Signature { name: rc!(yolo), params: vec![], type_anno: None }),
FuncSig(Signature { name: rc!(swagg), params: vec![], type_anno: None })
] })]));
parse_test!("impl Mondai for Lollerino { fn yolo(); fn swagg(); }", AST(vec![
Declaration(Impl {
type_name: ty!("Lollerino"),
interface_name: Some(rc!(Mondai)),
block: vec![
FuncSig(Signature { name: rc!(yolo), params: vec![], type_anno: None}),
FuncSig(Signature { name: rc!(swagg), params: vec![], type_anno: None })
] })]));
parse_test!("impl Option<WTFMate> { fn oi() }", AST(vec![
Declaration(Impl {
type_name: Singleton(TypeSingletonName { name: rc!(Option), params: vec![ty!("WTFMate")]}),
interface_name: None,
block: vec![
FuncSig(Signature { name: rc!(oi), params: vec![], type_anno: None }),
]
})]));
}
#[test]
fn parsing_type_annotations() {
parse_test!("const a = b : Int", AST(vec![
Declaration(Binding { name: rc!(a), constant: true, expr:
Expression(val!("b"), Some(ty!("Int"))) })]));
parse_test!("a : Int", AST(vec![
exprstatement!(val!("a"), ty!("Int"))
]));
parse_test!("a : Option<Int>", AST(vec![
exprstatement!(val!("a"), Singleton(TypeSingletonName { name: rc!(Option), params: vec![ty!("Int")] }))
]));
parse_test!("a : KoreanBBQSpecifier<Kimchi, Option<Bulgogi> >", AST(vec![
exprstatement!(val!("a"), Singleton(TypeSingletonName { name: rc!(KoreanBBQSpecifier), params: vec![
ty!("Kimchi"), Singleton(TypeSingletonName { name: rc!(Option), params: vec![ty!("Bulgogi")] })
] }))
]));
parse_test!("a : (Int, Yolo<a>)", AST(vec![
exprstatement!(val!("a"), Tuple(
vec![ty!("Int"), Singleton(TypeSingletonName {
name: rc!(Yolo), params: vec![ty!("a")]
})]))]));
}
#[test]
fn parsing_lambdas() {
parse_test! { "{|x| x + 1}", single_expr!(
Lambda { params: vec![(rc!(x), None)], body: vec![exst!("+", val!("x"), NatLiteral(1))] }
) }
parse_test!("{ |x: Int, y| a;b;c;}", AST(vec![
exprstatement!(Lambda {
params: vec![(rc!(x), Some(ty!("Int"))), (rc!(y), None)],
body: vec![exst!(val!("a")), exst!(val!("b")), exst!(val!("c"))]
})
]));
parse_test!("{|x| y}(1)", AST(vec![
exprstatement!(Call { f: bx!(ex!(
Lambda { params: vec![(rc!(x), None)], body: vec![exprstatement!(val!("y"))] })),
arguments: vec![ex!(NatLiteral(1))] })]));
}
#[test]
fn list_literals() {
parse_test! {
"[1,2]", AST(vec![
exprstatement!(ListLiteral(vec![ex!(NatLiteral(1)), ex!(NatLiteral(2))]))])
};
}
#[test]
fn while_expr() {
parse_test! {
"while { }", AST(vec![
exprstatement!(WhileExpression { condition: None, body: vec![] })])
}
parse_test! {
"while a == b { }", AST(vec![
exprstatement!(WhileExpression { condition: Some(bx![ex![binexp!("==", val!("a"), val!("b"))]]), body: vec![] })])
}
}
#[test]
fn for_expr() {
parse_test! {
"for { a <- maybeValue } return 1", AST(vec![
exprstatement!(ForExpression {
enumerators: vec![Enumerator { id: rc!(a), generator: ex!(val!("maybeValue")) }],
body: bx!(MonadicReturn(ex!(NatLiteral(1))))
})])
}
parse_test! {
"for n <- someRange { f(n); }", AST(vec![
exprstatement!(ForExpression { enumerators: vec![Enumerator { id: rc!(n), generator: ex!(val!("someRange"))}],
body: bx!(ForBody::StatementBlock(vec![exprstatement!(Call { f: bx![ex!(val!("f"))], arguments: vec![ex!(val!("n"))] })]))
})])
}
}
}