Lol starting over from scratch again

H-M is hard :/
This commit is contained in:
greg 2018-05-27 00:14:47 -07:00
parent f88d2331e3
commit 70ec79c4b3

View File

@ -7,320 +7,34 @@ use std::fmt::Write;
use itertools::Itertools;
use parsing;
pub struct TypeContext;
impl TypeContext {
pub fn new() -> TypeContext {
TypeContext { }
}
pub fn debug_types(&self) -> String {
format!("Nothing to debug")
}
pub fn type_check_ast(&mut self, input: &parsing::AST) -> Result<String, String> {
Ok(format!("VOID VOID VOID"))
}
}
/* GIANT TODO - use the rust im crate, unless I make this code way less haskell-ish after it's done
*/
use parsing;
/*
type TypeName = Rc<String>;
pub type TypeResult<T> = Result<T, String>;
#[derive(Debug, PartialEq, Clone)]
enum MonoType {
Const(TypeConst),
Var(TypeName),
Function(Box<MonoType>, Box<MonoType>),
}
#[derive(Debug, PartialEq, Clone)]
enum TypeConst {
Unit,
Nat,
Int,
Float,
StringT,
Bool,
Tuple(Vec<MonoType>),
}
impl MonoType {
fn free_vars(&self) -> HashSet<TypeName> {
use self::MonoType::*;
match self {
Const(_) => HashSet::new(),
Var(a) => {
let mut h = HashSet::new();
h.insert(a.clone());
h
},
Function(a, b) => {
a.free_vars().union(&b.free_vars()).cloned().collect()
},
}
}
//TODO maybe this should be type self, and consume?
fn apply_substitution(&self, s: &Substitution) -> MonoType {
use self::MonoType::*;
match self {
Const(t) => Const(t.clone()),
Var(a) => s.0.get(a).map(|x| x.clone()).unwrap_or(Var(a.clone())),
Function(a, b) => Function(
Box::new(a.apply_substitution(s)),
Box::new(b.apply_substitution(s))
)
}
}
}
#[derive(Debug, PartialEq, Clone)]
struct PolyType(HashSet<TypeName>, MonoType);
impl PolyType {
fn free_vars(&self) -> HashSet<TypeName> {
let mtype = self.1.free_vars();
self.0.difference(&mtype).cloned().collect()
}
fn apply_substitution(&self, s: &Substitution) -> PolyType {
let mut map: HashMap<TypeName, MonoType> = HashMap::new();
for (name, monotype) in s.0.iter() {
if let None = self.0.get(name) {
map.insert(name.clone(), monotype.clone());
}
}
let newsub = Substitution(map);
let new = self.1.apply_substitution(&newsub);
PolyType(self.0.clone(), new)
}
}
#[derive(Debug, PartialEq, Clone)]
struct Substitution(HashMap<TypeName, MonoType>);
impl Substitution {
fn new() -> Substitution {
Substitution(HashMap::new())
}
fn bind_variable(name: &TypeName, var: &MonoType) -> Substitution {
Substitution(hashmap! {
name.clone() => var.clone()
})
}
fn merge(self, other: Substitution) -> Substitution {
let mut map = HashMap::new();
for (name, ty) in self.0.into_iter() {
map.insert(name, ty);
}
for (name, ty) in other.0.into_iter() {
map.insert(name, ty);
}
Substitution(map)
}
}
#[derive(Debug, Default)]
struct TypeEnvironment {
map: HashMap<TypeName, PolyType>,
}
impl TypeEnvironment {
fn apply_substitution(&self, s: &Substitution) -> TypeEnvironment {
let mut map = HashMap::new();
for (name, polytype) in self.map.iter() {
map.insert(name.clone(), polytype.apply_substitution(s));
}
TypeEnvironment { map }
}
fn lookup(&self, name: &TypeName) -> Option<PolyType> {
self.map.get(name).map(|x| x.clone())
}
fn extend(&mut self, name: &TypeName, ty: PolyType) {
self.map.insert(name.clone(), ty);
}
fn free_vars(&self) -> HashSet<TypeName> {
let mut free = HashSet::new();
for (_, ptype) in self.map.iter() {
free = free.union(&ptype.free_vars()).cloned().collect()
}
free
}
}
pub struct TypeContext {
environment: TypeEnvironment,
}
impl TypeContext {
pub fn new() -> TypeContext {
TypeContext { environment: TypeEnvironment::default() }
}
pub fn debug_types(&self) -> String {
let mut output = format!("Type context\n");
for (sym, ty) in &self.environment.map {
write!(output, "{} -> {:?}\n", sym, ty).unwrap();
}
output
}
pub fn type_check_ast(&mut self, ast: &parsing::AST) -> TypeResult<String> {
let ref block = ast.0;
let output = {
let mut infer = Infer::new(&mut self.environment);
let output = infer.block(block);
output
};
println!("ENV LOOKS LIKE: {:?}", self.environment);
match output {
Ok(s) => Ok(format!("{:?}", s)),
Err(s) => Err(format!("Error: {:?}", s))
}
}
}
struct Infer<'a> {
env: &'a mut TypeEnvironment,
_idents: usize
}
#[derive(Debug)]
enum InferError {
CannotUnify(MonoType, MonoType),
OccursCheckFailed(TypeName, MonoType),
UnknownIdentifier(TypeName),
Custom(String),
}
type InferResult<T> = Result<T, InferError>;
impl<'a> Infer<'a> {
fn new(env: &'a mut TypeEnvironment) -> Infer {
Infer {
env,
_idents: 0
}
}
fn fresh(&mut self) -> MonoType {
let i = self._idents;
self._idents += 1;
let name = Rc::new(format!("{}", ('a' as u8 + 1) as char));
MonoType::Var(name)
}
fn instantiate(&mut self, ptype: PolyType) -> MonoType {
let mtype = ptype.1.clone();
let mut m = HashMap::new();
for name in ptype.0.iter() {
m.insert(name.clone(), self.fresh());
}
let sub = Substitution(m);
mtype.apply_substitution(&sub)
}
fn generalize(&mut self, ty: MonoType) -> PolyType {
let free_mtype = ty.free_vars();
let free_env = self.env.free_vars();
let diff: HashSet<TypeName> = free_mtype.difference(&free_env).cloned().collect();
PolyType(diff, ty)
}
fn block(&mut self, block: &Vec<parsing::Statement>) -> InferResult<MonoType> {
let mut ret = MonoType::Const(TypeConst::Unit);
for s in block {
ret = match s {
parsing::Statement::ExpressionStatement(expr) => self.infer_expression(expr)?,
parsing::Statement::Declaration(decl) => {
self.infer_declaration(decl)?;
MonoType::Const(TypeConst::Unit)
}
}
}
Ok(ret)
}
fn infer_declaration(&mut self, decl: &parsing::Declaration) -> InferResult<MonoType> {
use parsing::Declaration::*;
use parsing::Signature;
match decl {
Binding { name, expr, .. } => {
let tau: MonoType = self.infer_expression(&expr)?;
let sigma = self.generalize(tau);
self.env.extend(name, sigma);
},
FuncDecl(Signature { name, params, type_anno }, block) => {
let mut fn_type_env = TypeEnvironment::default();
let mut local_infer = Infer::new(&mut fn_type_env);
let mut arg_types: Vec<MonoType> = Vec::new();
for (param_name, maybe_type) in params {
println!("HANDLING PARAM: {}", param_name);
let tau = local_infer.fresh();
let sigma = PolyType(HashSet::new(), tau);
local_infer.env.extend(param_name, sigma);
}
let ret_type = local_infer.block(block)?;
println!("RET TYPE: {:?}", ret_type);
let mut final_type = MonoType::Function(Box::new(MonoType::Const(TypeConst::Unit)), Box::new(ret_type));
println!("ARG TYPES: {:?}", arg_types);
for ty in arg_types.into_iter().rev() {
final_type = MonoType::Function(Box::new(ty), Box::new(final_type));
}
let final_ptype = self.generalize(final_type);
self.env.extend(name, final_ptype);
},
_ => return Err(InferError::Custom(format!("This decl not yet supported")))
}
Ok(MonoType::Const(TypeConst::Unit))
}
fn infer_expression(&mut self, expr: &parsing::Expression) -> InferResult<MonoType> {
match expr {
parsing::Expression(e, Some(anno)) => {
return Err(InferError::Custom(format!("Annotations not done yet")))
/*
let anno_ty = anno.to_type()?;
let ty = self.infer_exprtype(&e)?;
self.unify(ty, anno_ty)
*/
},
parsing::Expression(e, None) => self.infer_expression_type(e)
}
}
fn infer_expression_type(&mut self, expr: &parsing::ExpressionType) -> InferResult<MonoType> {
use self::parsing::ExpressionType::*;
Ok(match expr {
NatLiteral(_) => MonoType::Const(TypeConst::Nat),
FloatLiteral(_) => MonoType::Const(TypeConst::Float),
StringLiteral(_) => MonoType::Const(TypeConst::StringT),
BoolLiteral(_) => MonoType::Const(TypeConst::Bool),
Value(name) => {
let sigma = match self.env.lookup(name) {
Some(ty) => ty,
None => return Err(InferError::UnknownIdentifier(name.clone())),
};
let tau = self.instantiate(sigma);
tau
},
Call { f, arguments } => {
/*
let sigma = match sel
*/
unimplemented!()
},
e => return Err(InferError::Custom(format!("this expression type not done yet: {:?}", e)))
})
}
}
*/
/* TODO this should just check the name against a map, and that map should be pre-populated with
* types */